
Debugger Toolchain Validation via Cross-Level

Debugging

Yibiao Yang
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

yangyibiao@nju.edu.cn

Maolin Sun
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

merlin@smail.nju.edu.cn

Jiangchang Wu
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

jiangchangwu@smail.nju.edu.cn

Qingyang Li
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

liqingyang@smail.nju.edu.cn

Yuming Zhou
State Key Laboratory for Novel

Software Technology,
Nanjing University
Nanjing, China

zhouyuming@nju.edu.cn

Abstract

Ensuring the correctness of debugger toolchains is of para-
mount importance, as they play a vital role in understanding
and resolving programming errors during software develop-
ment. Bugs hidden within these toolchains can significantly
mislead developers. Unfortunately, comprehensive testing
of debugger toolchains is lacking due to the absence of ef-
fective test oracles. Existing studies on debugger toolchain
validation have primarily focused on validating the debug
information within optimized executables by comparing the
traces between debugging optimized and unoptimized exe-
cutables (i.e., different executables) in the debugger, under
the assumption that the traces obtained from debugging
unoptimized executables serve as a reliable oracle. How-
ever, these techniques suffer from inherent limitations, as
compiler optimizations can drastically alter source code ele-
ments, variable representations, and instruction order, ren-
dering the traces obtained from debugging different executa-

bles incomparable and failing to uncover bugs in debugger
toolchains when debugging unoptimized executables. To ad-
dress these limitations, we propose a novel concept called
Cross-Level Debugging (CLD) for validating the debugger
toolchain. CLD compares the traces obtained from debug-
ging the same executable using source-level and instruction-
level strategies within the same debugger. The core insight
of CLD is that the execution traces obtained from different
debugging levels for the same executable should adhere to
specific relationships, regardless of whether the executable

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707271

is generated with or without optimization. We formulate
three key relations in CLD: reachability preservation of pro-
gram locations, order preservation for reachable program
locations, and value consistency at program locations, which
apply to traces at different debugging levels. We implement
Devil, a practical framework that employs these relations
for debugger toolchain validation. We evaluate the effective-
ness of Devil using two widely used production debugger
toolchains, GDB and LLDB. Ultimately, Devil successfully
identified 27 new bug reports, of which 18 have been con-
firmed and 12 have been fixed by developers.

CCS Concepts: • Software and its engineering→ Soft-

ware verification and validation; Compilers.

Keywords: Debugger, Validation, Cross-Level Debugging
ACM Reference Format:

Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yum-
ing Zhou. 2025. Debugger Toolchain Validation via Cross-Level
Debugging. In Proceedings of the 30th ACM International Conference

on Architectural Support for Programming Languages and Operat-

ing Systems, Volume 1 (ASPLOS ’25), March 30-April 3, 2025, Rot-

terdam, Netherlands. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3669940.3707271

1 Introduction

Debugger toolchains serve as essential infrastructure for
developers, facilitating effective code comprehension, local-
ization, and resolution of program errors within software sys-
tems. These toolchains offer sophisticated debugging func-
tionalities, primarily involving management of breakpoints,
control of the program execution flow, and access to variable
states [2, 13]. These capabilities enable developers to control
program execution and thoroughly examine dynamic pro-
gram states precisely. However, bugs within these debugger
toolchains can significantly mislead developers, leading to
erroneous assumptions regarding the execution status of

https://orcid.org/0000-0003-1153-2013
https://orcid.org/0000-0001-5617-2205
https://orcid.org/0000-0002-9932-7315
https://orcid.org/0009-0004-5666-2158
https://orcid.org/0000-0002-4645-2526
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3669940.3707271
https://doi.org/10.1145/3669940.3707271
https://doi.org/10.1145/3669940.3707271

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

specific source lines or variable values [7]. As prior study
states [3], the entire toolchain (compiler, linker, debugger) must

be free of debug information bugs to provide a reliable de-

bugging experience. Therefore, ensuring the correctness of
debugger toolchains is of utmost importance.
Unfortunately, validating debugger toolchains presents

significant challenges, primarily due to the absence of ef-
fective debug actions as test inputs and the lack of well-
defined expected behaviors serving as test oracles. Debug-
gers allow developers to employ flexible debug actions based
on the dynamic program states, making it a complex task
to devise effective debug actions specifically for testing de-
bugger toolchains. Furthermore, in the context of debugger
toolchain testing, the test oracle encompasses extensive infor-
mation that captures the dynamic program states executed
within the debugger. Obtaining such a test oracle statically,
given a test program and a sequence of debug actions, is
highly challenging, and the substantial human intervention
required makes it impractical.
Prior studies have proposed various techniques for vali-

dating debugger toolchains [1, 3, 8]. These techniques have
demonstrated their efficacy in exposing bugs in debug infor-
mation emitted by compiler optimizations. However, these
existing techniques suffer from inherent limitations that sig-
nificantly constrain their efficacy and applicability. They
have primarily focused on uncovering bugs specifically re-
lated to compiler optimizations by identifying inconsisten-
cies between the execution traces obtained from debugging
optimized and unoptimized executables (i.e., different exe-
cutables). This narrow focus is predicated on the assump-
tion that the traces from debugging unoptimized executables
serve as a reliable oracle, which may fail to uncover bugs in
debugger toolchains that are entirely unrelated to compiler
optimizations. Moreover, these techniques may result in an
influx of false positives due to the drastic effects of compiler
optimizations, which can aggressively optimize out source
code elements and variables, as well as reorder instructions,
rendering the state traces between debugging optimized and
unoptimized executables fundamentally incomparable.

Approach. In this paper, we present a novel concept called
Cross-Level Debugging (CLD) for identifying bugs in debug-
ger toolchains. CLD compares the traces for debugging the
same executable within the debugger respectively using
source-level and instruction-level debugging strategies and
identifies violations on predefined relations as potential bugs
in debugger toolchains. In particular, we formalize three
key predefined relations in CLD across different levels of
debugging strategies: reachability preservation of program
locations, order preservation for reachable program locations,
and value consistency at program locations, which apply to
traces at different debugging levels. With CLD, we imple-
ment Devil, a practical framework that employs these three
predefined relations for debugger toolchain validation. We

evaluate the effectiveness of Devil using two widely used
production debugger toolchains, GDB and LLDB. Ultimately,
Devil successfully identified 27 new bug reports, of which
18 have been confirmed and 12 have been fixed by developers.
In summary, we make the following main contributions:

• Novel Conceptual Approach: We propose a novel con-
cept called Cross-Level Debugging (CLD) to address the
test oracle problem for validating debugger toolchains.
CLD offers a fresh perspective by comparing traces across
different levels for debugging the same executable, with-
out relying on the problematic assumption that traces from
debugging the unoptimized executable (i.e. a different

executable) serve as a reliable oracle. This innovative ap-
proach enhances the effectiveness and broad applicability
of debugger toolchain validation.
• Comprehensive Systematic Framework: We introduce
a comprehensive framework for exhaustively exploring de-
bugger behavior. This framework allows a program to be
run to any specified location using various methods, after
which both source-level and instruction-level debugging
strategies are applied to obtain the corresponding traces.
The framework formalizes three key relations for compar-
ing these traces across different debugging levels, effec-
tively capturing essential debugger behavior. This struc-
tured framework facilitates in-depth comparative analysis
and yields valuable insights.
• Practical Implementation: We develop a practical proto-
type calledDevil to validate debugger toolchains. Through
comprehensive evaluations on twowidely-used debuggers,
GDB and LLDB,Devil successfully identified and reported
27 bugs, 18 of which have been confirmed or fixed by de-
velopers. Notably, several bugs reported by Devil have
been marked as critical, and these critical bugs cannot be
exposed by existing techniques.

2 Background and Motivation

This section overviews the debugger toolchain and the ex-
isting research on its validation. Then, we use a concrete
example to motivate our approach.

2.1 Debugger Toolchain and Validation

The debugger toolchain is composed of a compiler and a
debugger. Compilers are responsible for generating debug
information along with machine code to facilitate the de-
bugging process. The debug information plays a vital role in
establishing the relationship between the source code and
the resulting executable. It encompasses essential elements
such as variable and function names, types, symbol locations,
scopes, and function call stack frames.

Debuggers are essential tools for programmers, providing
the capability to analyze the state of a running program. They
heavily rely on the availability of debug information, which is
crucial for a comprehensive understanding of the program’s

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

behavior. By leveraging the debug information, debuggers
offer stepping functionality, enabling developers to investi-
gate the call stack, which consists of stack frames generated
during function calls. Examining the stack helps develop-
ers identify where the program paused and how execution
reached that specific point, thus enabling the inspection of
variable values and program locations.

Validating the debugger toolchain is of utmost importance
to ensure the precise generation and effective utilization of
debug information. However, due to the interactive nature of
debugger toolchains, automatically detecting bugs in them
presents significant challenges. Previous studies have fo-
cused on specific aspects of debugger toolchain validation.
For instance, Li et al. [8] propose an approach employing ac-
tionable programs to inspect specific variable values, thereby
validating the debug information produced by compilers at
different optimization levels. Similarly, Di Luna et al. [3] de-
vise a framework that establishes various trace invariants
involving the hit line, backtrace, and parameters rather than
the sole consideration of variables. More recently, Assaiante
et al. [1] introduce the concept of the completeness prob-
lem concerning debug information, unveiling instances of
incompleteness within the debug information.

While the aforementioned studies have demonstrated their
effectiveness in validating debugger toolchains, they exhibit
notable limitations. Primarily, these techniques predomi-
nantly focus on exposing bugs within the debug information
associated with compiler optimizations, rendering them inca-
pable of detecting issues unrelated to optimizations. Further-
more, comparing dynamic state traces between optimized
and unoptimized code is often infeasible, as many source
code and variables are eliminated during optimization.

2.2 Motivating Example

This paper introduces a novel concept called Cross-Level

Debugging (CLD) and proposes a technique based on this
concept for validating debugger toolchains. In Figure 1, we
present a concrete example to illustrate our approach.1

Figure 1a presents a simplified test program that triggers
bug #27151 in the GCC toolchain. In Figure 1b, the program
is compiled using GCCwith the -g flag to enable debug infor-
mation at the optimization level -O0. Following compilation,
the program is executed using GDB. A breakpoint is set at
line 8 with the break 8 command, followed by the run and
step commands to initiate and continue execution at the
source level. According to the GDB documentation2, the run
command starts the program under GDB, while the step
command directs the program to “continue running until
control reaches a different source line, then stop and return
control to GDB.” This functionality ensures that execution

1For illustrative purposes, the code and associated debugging commands in
all figures within this paper are simplified from the original bug report.
2https://sourceware.org/gdb/current/onlinedocs/gdb.html/

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int main()
6 {
7 int *p = (int *)malloc(sizeof(int)*4);
8 memset(p, 0, sizeof(p));
9 printf("hello␣world");
10 return 0;
11 }

(a) P1 that reveals a bug in the GDB toolchain. #27151

$ gcc -O0 -g a.c
$ gdb a.out
(gdb) break 8
Breakpoint at a.c:8
(gdb) run
8 memset(p, 0, sizeof(p));
(gdb) step
hello world
Process exited

(b) Source level

$ gcc -O0 -g a.c
$ gdb a.out
(gdb) break 8
Breakpoint at a.c:8
(gdb) run
8 memset(p, 0, sizeof(p));
(gdb) stepi 22
9 printf("hello␣world");
...

(c) Instruction level

Figure 1. A motivating example of CLD, derived and sim-
plified from the GDB issue #27151 reported by Devil.
halts only at the first instruction of a source line, thereby
preventing multiple interruptions within a statement.
However, in this instance, the program incorrectly exits

normally, failing to pause at line 9 as expected when using
the step command in GDB. In contrast, when the stepi
command is utilized to step through the program at the
instruction level, as illustrated in Figure 1c, the program be-
haves as expected and pauses at line 9. Notably, the stepi 22
command instructs GDB to execute the next 22 instructions
in the program. The value ‘22’ is derived from the traces of
the debug actions, indicating that 22 stepi operations are
required to reach the ninth statement.
The discrepancy between source-level and instruction-

level debugging reveals a bug in the GDB toolchain, initially
identified byDevil and subsequently confirmed and resolved
by the developers as a genuine GDB bug. Notably, compil-
ing the test program with optimization levels such as -O1,
-O2, and others exhibits the same erroneous behavior in the
debugger as observed with -O0. This indicates that existing
techniques are inadequate for detecting this issue. Thus, this
case highlights the limitations of existing techniques in vali-
dating debugger toolchains and emphasizes the potential of
CLD as a promising method to address these shortcomings.

3 Approach

In this paper, we propose a validation technique for debugger
toolchains called Cross-Level Debugging (CLD). CLD involves
comparing traces obtained from the debugger using different
levels of debugging strategies.

https://sourceware.org/bugzilla/show_bug.cgi?id=27151
https://sourceware.org/gdb/current/onlinedocs/gdb.html/
https://sourceware.org/bugzilla/show_bug.cgi?id=27151
https://sourceware.org/bugzilla/show_bug.cgi?id=27151

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

3.1 Formulation

CLD utilizes two levels of debugging strategies, namely
source-level debugging and instruction-level debugging, to
execute the same target executable in the debugger step-by-
step. This study assumes that the target program is well-
formed, deterministic, and single-threaded.

For each strategy, we trace and record the program’s loca-
tion and variable values at each step as the dynamic program
states. The program location includes information such as
the source filename, line number, offset (i.e., the column
of the source line), and the address of the corresponding
machine instruction. Particularly, we record the occurrence
and order of program locations being hit during execution,
denoted asH(𝑃) and O(𝑃), respectively. Furthermore, we
record the values of variables at each step, represented by
V(𝑃). Based on our observations of the debugger toolchain,
we propose the following relations for the traces obtained
from source-level and instruction-level debugging strategies:

1. 𝑅#1: (Reachability preservation) A program location in
the source program should be hit at source-level stepping
if and only if it can be hit at instruction-level stepping.

2. 𝑅#2: (Order preservation) If a program location 𝑙𝑎 is
hit before location 𝑙𝑏 at the source-level stepping, then 𝑙𝑎
should be hit before 𝑙𝑏 at the instruction-level stepping.

3. 𝑅#3: (Value consistency) When a program location can
be reached at both the source level and instruction level,
the initial values of each variable at that program location
should be consistent across different levels of debugging.

As discussed in Section 2.1, a line of source code can be
associated with multiple machine instructions, while each
machine instruction is typically mapped to only one line of
source code. This characteristic implies that instruction-level
debugging provides more fine-grained control over the pro-
gram’s execution compared to source-level debugging. At
source-level stepping, when the program’s execution reaches
a specific source line in the debugger, it essentially pauses
at the head-most instruction associated with that source
code line. Consequently, if a program location is reached
through source-level stepping, it must also be encountered
at instruction-level stepping. Thus, the relation of 𝑅#1 holds
true. Furthermore, if there are two reachable lines of source
code, their respective hit order should remain consistent
across the two different debugging strategies, ensuring the
satisfaction of relation 𝑅#2. Moreover, given a specific in-
put, the execution of a program is deterministic. Regardless
of the debugging strategy employed, the dynamic program
states at specific program locations under different debug-
ging levels should not contradict each other. Therefore, the
values of each variable at different debugging levels should
remain consistent, i.e., the relation 𝑅#3 is upheld. The formal

definitions of the relations are as follows:

R#1:∀𝑙 ∈ 𝑃, 𝑙 ∈ H𝑠 (𝑃) ⇒ 𝑙 ∈ H𝑖 (𝑃)

R#2:∀𝑙𝑎, 𝑙𝑏 ∈ 𝑃, O𝑙𝑎
𝑠 (𝑃) > O

𝑙𝑏
𝑠 (𝑃) ⇔ O𝑙𝑎

𝑖
(𝑃) > O𝑙𝑏

𝑖
(𝑃)

R#3:∀𝑣𝑙 ∈ (V𝑙
𝑠 (𝑃) ∧ V𝑙

𝑖 (𝑃)), 𝑣𝑙𝑠 (𝑃) = 𝑣𝑙𝑖 (𝑃)
Here, 𝑃 denotes a given program, and 𝑙 represents a pro-
gram location in 𝑃 , which can be a source line or an address.
H𝑠 (𝑃) and H𝑖 (𝑃) represent the set of program locations
hit at source-level and instruction-level stepping, respec-
tively. O𝑙𝑎

𝑠 (𝑃) and O𝑙𝑏
𝑖
(𝑃) represent the hit order of program

locations 𝑙𝑎 and 𝑙𝑏 at source-level and instruction-level step-
ping, respectively. V𝑙

𝑠 (𝑃) and V𝑙
𝑖 (𝑃) represent the values

of the variables when the execution reaches source line 𝑙 at
source-level and instruction-level stepping, respectively. Cor-
respondingly, 𝑣𝑎𝑠 (𝑃) and 𝑣𝑎𝑖 (𝑃) represent the value of variable
𝑣 when the execution reaches source line 𝑙 by source-level
and instruction-level stepping, respectively. If the traces vio-
late any of the aforementioned relations, a potential bug is
exposed within the debugger toolchain.

3.2 Algorithm

Based on the aforementioned formalized relations, we imple-
mented a tool named Devil to validate debugger toolchains
via CLD. Algorithm 1 outlines the main process of Devil,
which consists of the following main steps:
• Forwarding Program: Running the executable in the de-
bugger and stopping it at a randomly selected program
location using any debugging strategies.
• Stepping Program: Resuming to run the program in the
debugger step-by-step, utilizing source-level stepping and
instruction-level stepping, respectively.
• Recording Traces: Extracting dynamic program states of
the program at each step where it paused in the debugger
at different levels of debugging.
• ComparingTraces:Comparing the traces between source-
level and instruction-level stepping to identify violations to
the predefined relations as potential bugs in the toolchain.

3.2.1 Forwarding Program. To comprehensively exam-
ine the behavior of debugger toolchains, it is insufficient
to solely execute the executable step-by-step starting from
the beginning within the debugger. Devil addresses this
limitation with a more comprehensive approach. It initi-
ates the executable within the debugger and runs it until it
reaches a randomly selected starting location (Line 6). This
starting location can be either a source line of code or an
address within the target executable. Devil employs vari-
ous debugging strategies to reach this starting location. For
example, when a source line is specified as the starting lo-
cation, Devil can set a breakpoint on that line and execute
the program in the debugger until it stops at that breakpoint.
Alternatively, Devil can execute the program step-by-step
at the source or instruction level until reaching this specified

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 1: Devil’s process for debugger validation
Data: The debugger D, compiler C, program 𝑝 , input 𝑖
Result: reported bugs

1 begin

/* Loop each of compiler optimizations */

2 foreach 𝑜𝑝𝑡 ∈ D.getOptimizations() do
3 𝑝𝑑 ← C.compile(𝑝 , “-g”, opt)
4 while no termination criterion met do

5 𝑙 ← RandLocation(𝑝𝑑)
/* S2: Run to the selected location */

6 runToLocation(D, 𝑝𝑑 , 𝑙)
/* S3: Source-level debugging */

7 H𝑠 , O𝑠 ,V𝑠 ← stepping(D, 𝑝𝑑 , “line")
/* S3: Instruction-level debugging */

8 H𝑖 , O𝑖 ,V𝑖 ← stepping(D, 𝑝𝑑 , “inst")
/* S4: Check predefined relations */

9 if isViolated(H𝑠 , O𝑠 ,V𝑠 ,H𝑖 , O𝑖 ,V𝑖) then

10 reportBug()

/* Run program step-by-step in debugger */

11 Function stepping(Debugger D, Program 𝑝𝑑 , Level 𝑙𝑒𝑣)
12 H , O,V ← [], [], []
13 D.start(𝑝𝑑)
14 while D.processIsExit() == 𝐹𝑎𝑙𝑠𝑒 do

15 if 𝑙𝑒𝑣 == “line” then

16 D.step()

17 else

18 D.stepi()

19 H ,O, F ,V ← D.getTrace (𝑙)

20 return [H , O,V]
/* Check whether relations are violated */

21 Function isViolated(H𝑠 , O𝑠 ,V𝑠 ,H𝑖 , O𝑖 ,V𝑖)
22 foreach 𝑙 ∈ H𝑠 do

23 if 𝑙 ∉H𝑖 then

24 return True

25 if (𝑙𝑎 ∈ H𝑠) ∧ (𝑙𝑏 ∈ H𝑠) ∧ (𝑙𝑎 ∈ H𝑖) ∧ (𝑙𝑏 ∈ H𝑖) then
26 if (O𝑎𝑠 − O𝑏𝑠) ≠ (O𝑎𝑖 − O

𝑏
𝑖
) then

27 return True

28 foreach 𝑎 ∈ (V𝑠 ∩V𝑖) do
29 foreach 𝑣 ∈ (V𝑠 (𝑎) ∩ V𝑖 (𝑎)) do
30 if 𝑣𝑎𝑠 ≠ 𝑣𝑎

𝑖
then

31 return True

32 return False

starting location. The primary objective of this step is to
ensure the program execution successfully reaches the spec-
ified location. By employing different strategies, Devil aims
to cover a wider range of program states, thereby increasing
the possibility of identifying potential bugs.

3.2.2 Stepping Program. Once the execution reaches the
starting location of the target program, Devil resumes pro-
gram execution and continues to execute the program step-
by-step within the debugger. This step-by-step execution oc-
curs at both the source-level and instruction-level debugging
until the program exits (Lines 7-8). Taking GDB as an example,
to continue running the program at the source-level debug-
ging, Devil uses the debug action sequence “while(true)
{step}” to execute the program line by line iteratively until
the program exits. For instruction-level stepping, the cor-
responding debug action sequence is “while(true) {stepi}”
(Lines 14-18). Notably, instruction-level stepping employs
the stepi debug action instead of step to execute one in-
struction at each step.

3.2.3 Recording Traces. When executing the program
step-by-step within the debugger, Devil records traces of
the dynamic program states at each step, serving as a repre-
sentation of the debugger’s behavior. These traces include
the source line number, machine instruction address, and
variable values. To extract this information, Devil exam-
ines the stack frame to determine the execution location,
including the next source line number and the address of the
subsequent machine instruction. Additionally, Devil records
the values of individual variables at each step. For example,
GDB provides commands like “bt -frame-info” and “info
args/locals” to examine the stack frame and retrieve vari-
able values. Along with stepping, the debug action sequence
used to extract the dynamic states while stepping through
the program in GDB is “while(true) {bt -frame-info→ info
args/locals→ stepi}”.

3.2.4 Comparing Traces. By recording traces of dynamic
program states during both source-level and instruction-
level stepping, Devil compares the obtained traces to verify
predefined relationships. For each test program, Devil exam-
ines the source lines, memory addresses, and variable values
at various program locations within the traces generated by
source-level and instruction-level debugging. The objective
is to identify any violations of the predefined relationships
within the traces. For example, if a source line 𝑠 is reached
during source-level stepping, Devil checks whether 𝑠 is also
reached during instruction-level stepping. Any violations
identified in the traces are considered potential bugs in the
debugger toolchain (Lines 9-10). It is important to note that
multiple violations may arise from a single underlying bug in
the debugger toolchain. To prevent duplicate or invalid bug
reports, each identified violation will be manually inspected
before being reported to developers.

3.3 Illustrative Example

In this section, we use three concrete examples to illustrate
how Devil works. All these bugs are identified and reported
by Devil and subsequently confirmed or fixed by developers.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

1 unsigned int b = 0, d = 0;
2 static int c[1][2]={{0, 1}};
3
4 int main() {
5 for (; d<1; d++)
6 for (; b<1; b++)
7 c[b][d+1] = 0;
8
9 return 0;
10 }

(a) P2

$ gcc -O0 -g small.c
$ gdb -q a.out
(gdb) b 5
Breakpoint 1 at a.c:5.
(gdb) r
Breakpoint 1 at a.c:5
5 for (; d<1; d++)
(gdb) step
7 c[b][d+1] = 0;
(gdb) step
6 for (; b<1; b++)

(b) Source level

$ gcc -O0 -g small.c
$ gdb -q a.out
(gdb) b 5
Breakpoint 1 at a.c:5.
(gdb) r
Breakpoint 1 at a.c:5
5 for (; d<1; d++)
(gdb) stepi 4
6 for (; b<1; b++)
(gdb) stepi 7
7 c[b][d+1] = 0;

(c) Instruction level

Figure 2. GDB bug#95360. When stepping line by line, Line
#7 is hit before Line #6 as shown in (b). However, when
stepping instruction by instruction, Line #6 is hit by GDB
before Line #7 as shown in (c).

Violating R#1 (Reachability preservation). Figure 1, pre-
sented in the in the previous Section 2, illustrates a violation
of R#1. As shown in Figure 1a, the process exits directly when
stepping through P1 at the source level. However, during
instruction-level stepping, Line #8 and Line #9 are encoun-
tered by the GDB debugger, as depicted in Figure 1c. It is
important to note that the command “stepi 22” signifies
executing “stepi” 22 times interactively within the debug-
ger. Figure 1 clearly demonstrates that Line #8 and Line #9
can be reached during instruction-level stepping but not dur-
ing source-level stepping, thereby violating the predefined
relation R#1. This bug is identified by Devil for GDB and
has been resolved by the GDB developers.

Violating R#2 (Order preservation). Figure 2 shows a con-
crete example demonstrating the violation of R#2. In this
scenario, Devil compiles the input program P2 using GCC.
When debugging the program at the source level in GDB
(Figure 2b), it is observed that lines 5, 7, and 6 are hit succes-
sively, forming an ordered sequence ⟦5, 7, 6⟧. However, when
debugging it at the instruction level (Figure 2c), the lines 5,
6, and 7 are hit successively, forming the sequence ⟦5, 6, 7⟧.
This discrepancy between these two execution sequences
indicates a bug in GDB. The bug was initially reported to
the GCC Bugzilla, and with the assistance of Tom de Vries,

1 #include <stdarg.h>
2
3 void f(int n, ...) {
4 va_list ap;
5 char *end;
6
7 for(int i=0; i<2; i++) {
8 va_start(ap, n);
9 while (1) {
10 end=va_arg(ap, char*);
11 if(!end) break;
12 }
13 va_end(ap);
14 }
15 }
16
17 int main() {
18 f(1);
19 }

(a) P3

$ clang -O1 -g a.c
$ lldb a.out
(lldb) b main
Breakpoint 1 at a.c:18
(lldb) r
18 f(1);
(lldb) step 3
10 end=va_arg(ap, char*);
(lldb) fr var i
(int) i = 1

(b) Source level

$ clang -O1 -g a.c
$ lldb a.out
(lldb) b main
Breakpoint 1 at a.c:18
(lldb) r
18 f(1);
(lldb) stepi 19
10 end=va_arg(ap, char*);
(lldb) fr var i
(int) i = 0

(c) Instruction level

Figure 3. LLVM bug#46040. Inconsistent variable value be-
tween source level debugging as shown in (b) and instruction
level debugging as shown in (c).

it was transferred to the GDB Bugzilla by filing a new bug
report for GDB.3 According to the maintenance principle of
GNU Bugzilla, a bug report with the status NEW is considered
a confirmed bug report [4, 18]. Therefore, this is a confirmed
GDB bug.

Violating R#3 (Value consistency). Figure 3 provides an
example to illustrate the violation of R#3. For this programP3
(Figure 3a), Devil utilizes LLDB to execute it step-by-step in
the debugger at different debugging levels. When debugging
at the source level (Figure 3b), the value of variable i at
line 10 is 1. However, when debugging at the instruction
level (Figure 3c), the value of variable i at line 10 is 0. This
discrepancy in the values of i at the same program location
violates R#3, which states that the values of variables should
be consistent at different debugging levels. Devil identified
this bug, and it has been confirmed by the LLVM developers.

3https://sourceware.org/bugzilla/show_bug.cgi?id=26054

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95360
https://bugs.llvm.org/show_bug.cgi?id=46040
https://sourceware.org/bugzilla/show_bug.cgi?id=26054

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

4 Experimental Setup

4.1 Research Question

In this study, we investigate the following research questions:

• RQ1: Effectiveness of Devil. Can Devil effectively iden-

tify genuine bugs in debugger toolchains?

• RQ2: Influence of Bugs. What is the significance and

impact of the bugs exposed by Devil?

• RQ3: Contribution of Relations. How effective are the

predefined relations employed by Devil in exposing bugs?

• RQ4: Comparative Evaluation. How does the effective-

ness ofDevil compare to state-of-the-art (SOTA) techniques?

• RQ5: Overhead of Devil.What is the overhead incurred

by Devil in validating debugger toolchains?

4.2 Evaluation Setup

In this subsection, we describe the subject debugger toolchains
under test, the test programs chosen for the validation, and
the experimental environment.

Subject Debugger toolchains WeappliedDevil to the latest
trunk versions of GCC/GDB and Clang/LLDB, the widely rec-
ognized debugger toolchains. We selected these toolchains
as the subjects for the following reasons: (1) they have been
widely used in various communities; (2) they are the leading
compilers and debuggers, forming the most popular com-
piler toolchains of GNU and LLVM; and (3) these debuggers
support the execution of programs at both the source and in-
struction levels. To enable debugging, we compile the source
programs with the “-g” compilation flag, which instructs
the compiler to include additional debug information to ex-
ecutables. Devil can be applied at any optimization level,
so optimization flags such as “-O0/-Og/-O1/-O2/-O3” can
also be optionally enabled during compilation. For instance,
the command used by GCC to generate an executable with
debug information enabled and optimization level “-O1” for
a source file “test.c” is “gcc -O1 -g test.c”. Similarly,
when using Clang, the command is “clang -O1 -g test.c”.

Subject Test Programs We selected the C programs from
the test suite of GCC release (version 12.1.0) as the subject
test programs. This test suite comprises 45,115 C source pro-
grams. We chose these test programs for the validation of C
debugger toolchains due to the following reasons: (1) these
test programs are openly available as open-source projects,
facilitating access for research purposes; (2) these test pro-
grams cover a wide range of C semantics while strictly avoid-
ing any undefined behaviors; and (3) there are many pro-
grams in the GCC test-suite are self-contained, independent
of external libraries, and have predefined inputs that enable
them to be compiled and executed independently.

Environment The experiments were conducted within
a Docker container running Ubuntu 22.04, hosted on an

Ubuntu 18.04 system. The underlying hardware features a
48-core Intel(R) Core(R) CPU of 2.00GHz and 125GiB of RAM.

4.3 Data Analysis Methodology

To address RQ1, we feed each test program from the sub-
ject test programs to Devil to uncover bugs in the debugger
toolchains. We then manually inspect the identified viola-
tions and report potential bugs to the developers. We further
investigate the number of bug reports that are confirmed
or fixed by developers. To address RQ2, we investigate the
significance of the bugs identified by Devil by examining
their impact across different versions of the target toolchains.
Although the bugs are found in the latest trunk version, they
may also affect previous release versions. We select a range
of official release versions to determine how many of them
are affected by the corresponding bug-triggering inputs. This
analysis allows us to understand the duration for which the
reported bugs have existed in the subject toolchains, indi-
cating their importance. Additionally, we review developers’
discussions and feedback on the reported bugs to further
evaluate their significance. To address RQ3, we investigate
whether the state-of-the-art testing tool can detect the bugs
reported by Devil. Besides, we examine the violated rela-
tions in the reported bugs. This analysis allows us to grasp
the relative effectiveness of different relations in revealing
bugs. This investigation enables us to understand the full
extent of the contributions made by the relations in Devil.

5 Evaluation

We elaborate on the evaluation for Devil in this section with
respect to each of the research questions.

5.1 RQ1: Effectiveness of Devil.

Our ultimate goal is to expose previously unknown bugs for
the production toolchains. To this end, we applied Devil to
the latest trunk of GCC/GDB (until GCC and GDB 13.1.0) and
Clang/LLDB (until Clang and LLDB 16.0.0) during our experi-
ment. For each executable generated from the seed programs,
Devil executes the binary until it arrives at a predetermined
program location within the debugger. Specifically, in this
experimental setup, Devil sets breakpoints exclusively at
the main function. Subsequently, the debugger resumes the
execution of the program and proceeds to step through the
remaining code using both source-level and instruction-level
stepping. After that, Devil will inspect whether the prede-
fined relationships are violated to expose bugs in the debug-
ger toolchain. Devil regards each violation as a potential
bug, and we will manually inspect each violation to deter-
mine whether it is a real bug before reporting. It is worth
noting that, we exclude those uncompilable programs and
those programs require more than ten seconds for compila-
tion with respect to GCC and Clang, respectively. Besides,

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

Table 1. List of bugs reported by Devil.

NO. Tool #ID Status #Comment Importance Opt Relation

1 GDB 25350 Fixed 8 P2 critical -O0 R#1
2 GDB 25405 Fixed 3 P2 critical -O0 R#1
3 GDB 25573 Fixed 1 P2 critical -O0 R#1
4 GDB 26054 Confirmed 1 P2 normal -O0 R#2
5 GDB 26061 NotABug 6 - -O2 R#3
6 GDB 26063 Fixed 7 P2 normal -O2 R#1
7 GDB 27151 Fixed 9 P2 normal -O0 R#1
8 GDB 27179 Unconfirm 5 - -O0 R#1
9 GDB 29220 Unconfirm 2 - -O2 R#3
10 GDB 29236 Confirmed 1 P2 normal -O2 R#1
11 GDB 90574 Fixed 8 P3 normal -O0 R#1
12 GDB 90584 Fixed 7 P3 normal -O0 R#1
13 GDB 90586 Confirmed 2 P3 normal -O0 R#1
14 GDB 95414 Fixed 2 P3 normal -O2 R#3
15 GDB 30357 Fixed 1 P2 critical -O0 R#1
16 LLDB 45386 Fixed 2 enhance -O1 R#3
17 LLDB 45387 Fixed 2 enhance -O1 R#3
18 LLDB 45676 Confirmed 6 normal -O0 R#1
19 LLDB 45920 Confirmed 2 normal -O0 R#1
20 LLDB 46006 Fixed 3 normal -O3 R#3
21 LLDB 46007 Duplicate 5 - -O1 R#3
22 LLDB 46014 New 3 - -O3 R#1
23 LLDB 46040 New 4 - -O1 R#3
24 LLDB 46045 New 4 - -O1 R#1
25 LLDB 48381 New 3 - -O1 R#1
26 LLDB 48382 New 3 - -O2 R#1
27 LLDB 55744 Confirmed 3 - -O1 R#3

any program that requires more than ten seconds for the exe-
cution will also be excluded. As a result, approximately 5,000
and 3,000 test programs remain for the follow-up studies for
GCC and Clang, respectively.

Bugs Found. We manually inspected the violations as well
as the test programs and found that those detected violations
can indeed uncover real defects in the production debuggers.
We totally reported 27 valid bug reports to the bug tracking
systems of GCC/GDB and LLVM. Most of them can be found
under “iamanonymous.cs@gmail.com” in GDB/GCC’s and
LLVM’s Bugzilla databases. It is important to note that the
bug management guidelines of GCC/GDB and LLVM are not
exactly similar [6, 14, 17]. Specifically, a reported bug in GC-
C/GDB Bugzilla will be initially labeled as “UNCONFIRMED,”
and the status will change to “NEW” if developers confirm
it. However, in LLVM, a reported bug is labeled as “NEW”

Table 2. The optimization levels of the confirmed bugs.

Debugger -O0 -O1 -O2 -O3

GDB 9 0 3 0
LLDB 2 3 0 1

Total 11 3 3 1

by default and will be marked as “CONFIRMED” upon de-
veloper confirmation. Additionally, many bugs identified in
prior studies remain unfixed. Most violations detected by
Devil in this study may be associated with these existing
bugs. In order to avoid reporting duplicate bug reports, we
only filed 27 new bugs reports to the bug tracking sys-
tems of GCC/GDB and LLVM. At the end of 2021, the LLVM
Foundation migrated the data from Bugzilla to the LLVM
GitHub project repository.4 In Github, if an issue is resolved,
it will be closed as complete. Among the 27 bugs, 18 of them
have been confirmed or fixed by the developers, as listed
in Table 1. For the remaining bugs, most of them are still
pending confirmation by the developers. Additionally, GDB
bug #26061 has been closed as “NotABug” by the developer.
Upon examination, the developer conjectured that this issue
pertains to GCC rather than GDB. Two years later, after up-
dating GCC to the latest trunk and re-evaluating this bug,
we found that it had been resolved on the GCC side. We also
examine the comments and annotations provided by devel-
opers to determine the related products where the bugs were
located, as these bugs may reside in different components of
the toolchain. Among the confirmed bugs, seven of them are
diagnosed by the developers as pertaining to the debugger,
while eight are attributed to compiler issues. The remaining
bugs are currently pending further diagnosis.

Compilation Optimizations. Out of the 18 confirmed bugs,
11 were discovered at the “-O0” optimization level, as pre-
sented in Table 2. These bugs in the toolchains are not asso-
ciated with compiler optimizations and thus are difficult to
identify using existing testing tools. In addition, some bugs
were exclusively identified at optimization levels (three for
“-O1”, three for “-O2”, and one for “-O3”). Therefore, we can
deduce that Devil not only uncovers bugs in the toolchains
that are relevant to compiler optimizations but also detects
bugs that are unrelated to compiler optimizations.

Summary on Effectiveness

Devil demonstrates its effectiveness by effectively
detecting genuine bugs across various optimizations
within debugger toolchains.

4https://github.com/llvm/llvm-project/milestone/1

https://sourceware.org/bugzilla/show_bug.cgi?id=25350
https://sourceware.org/bugzilla/show_bug.cgi?id=25405
https://sourceware.org/bugzilla/show_bug.cgi?id=25573
https://sourceware.org/bugzilla/show_bug.cgi?id=26054
https://sourceware.org/bugzilla/show_bug.cgi?id=26061
https://sourceware.org/bugzilla/show_bug.cgi?id=26063
https://sourceware.org/bugzilla/show_bug.cgi?id=27151
https://sourceware.org/bugzilla/show_bug.cgi?id=27179
https://sourceware.org/bugzilla/show_bug.cgi?id=29220
https://sourceware.org/bugzilla/show_bug.cgi?id=29236
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90574
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90584
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90586
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95414
https://sourceware.org/bugzilla/show_bug.cgi?id=30357
https://github.com/llvm/llvm-project/issues/45386
https://github.com/llvm/llvm-project/issues/45387
https://bugs.llvm.org/show_bug.cgi?id=45676
https://bugs.llvm.org/show_bug.cgi?id=45920
https://bugs.llvm.org/show_bug.cgi?id=46006
https://bugs.llvm.org/show_bug.cgi?id=46007
https://bugs.llvm.org/show_bug.cgi?id=46014
https://bugs.llvm.org/show_bug.cgi?id=46040
https://bugs.llvm.org/show_bug.cgi?id=46045
https://bugs.llvm.org/show_bug.cgi?id=48381
https://bugs.llvm.org/show_bug.cgi?id=48382
https://github.com/llvm/llvm-project/issues/55744
https://sourceware.org/bugzilla/show_bug.cgi?id=26061
https://github.com/llvm/llvm-project/milestone/1

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

7.12 8.X 9.X 10.X tru
nk

2
3

5
4

7

Figure 4.Confirmed and fixed bugs that affect corresponding
release versions of GDB.

5.2 RQ2: Influence of Bugs.

We investigate the influence of bugs identified by Devil in
terms of their importance, developers’ feedback, and the
versions they affect.

Importance of bug reports. We further examine the im-
portance of the confirmed bugs by analyzing the importance
tags assigned to the corresponding bug reports. The impor-
tance of a bug is described as the combination of its priority
and severity. Specifically, the priority of a bug indicates the
urgency of fixing it, with multiple levels of classification
such as P1, P2, P3, and so on in GCC/GDB, while LLVM does
not have priority classification. The severity of a bug, on
the other hand, indicates its impact on the product, which
can be classified as critical, normal, and enhancement. Note
that the bug reports in the LLVM GitHub issue tracker typi-
cally do not have an importance tag either. Our findings are
presented in the sixth column of Table 1. Notably, four out
of the 18 confirmed bugs were assigned the importance of
P2 critical, indicating a relatively high level of priority and
severity in the bug management system of GCC/GDB. More-
over, as noted in Documentation of the GDB Bugzilla5, “From
the viewpoint of the GDB, how urgent is the bug fix? Select
either medium or low. High is reserved.” This statement im-
plies that the ‘P1’ priority is reserved for the most urgent
issues, suggesting that developers are unlikely to assign this
highest priority to a bug without a compelling reason. To
substantiate this, we reviewed all the ‘P1 critical’ bugs in
the GDB Bugzilla over the past ten years. Only seven bugs
were marked as ‘P1 critical,’ indicating that developers tend
to reserve this highest priority for truly urgent issues. This
context further emphasizes the importance of our four ‘P2
critical’ bugs. For LLDB, only two bugs were classified as ‘P
enhancement,’ with the remaining bugs deemed more criti-
cal. Thus, we conclude that Devil is effective in detecting
nontrivial bugs within debugger toolchains.

Feedback and discussions. The bugs reported byDevil have
received positive feedback and comments from developers,
reflecting their value and impact. Notably, Orlando Cazalet-
Hyams, a developer of LLVM, provided feedback on our

5https://sourceware.org/gdb/bugs/

Table 3. Distribution of confirmed bugs across various pre-
defined relations, categorized by debugger toolchains and
optimization levels.

(a) Debugger Toolchain (b) Optimization Level

Debugger

#Confirmed Bugs

Opt.

#Confirmed Bugs

R#1 R#2 R#3 Total R#1 R#2 R#3 Total

GDB 10 1 1 12 -O0 10 1 0 11
LLDB 2 0 4 6 -O1 0 0 3 3

Total 12 1 5 18 -O2 2 0 1 3
-O3 0 0 1 1

reported bug6, acknowledging its significance and stating,
“Nice find! I get the feeling that the variable locations for ‘i’

are correct, but the line table is messed up.” This feedback
demonstrates the engagement and recognition of the re-
ported bugs within the developer community. Furthermore,
several bugs identified by Devil have sparked extensive
discussions among developers. We observed that 14 bugs
received more than three comments, as indicated in the fifth
column in Table 1. This is a positive indicator of the com-
munity’s interest and involvement. For example, bug #90574
attracted the attention of two primary developers of GCC,
who left a total of seven comments. These discussions delved
into the core issue, the additional impact of the bug on the
toolchains, and potential fixes. Another noteworthy example
is bug #26061, where inconsistencies were observed between
source-level debugging and instruction-level debugging for
an argument’s value. Two years after reporting the bug, we
noticed that the problem no longer existed in the latest trunk
version of the debugger toolchains. Consequently, we left
a comment to inform the developers about the resolution.
Tom Tromey, the primary GDB developer, marked this bug
as “NOTABUG” but acknowledged that “Based on this I think

this is a compiler bug and not a GDB bug. There’s nothing

GDB can do to correct this kind of problem.” This feedback
recognizes our bug report and emphasizes the importance of
examining both the debugger and the compiler when incon-
sistencies are identified by Devil. These feedback instances
highlight the significance of our bug reports and the poten-
tial for violations in the traces to uncover bugs in both the
compiler and the debugger. Since both of them are essential
in facilitating debugging, a thorough investigation is neces-
sary when a violation occurs to determine whether it is a
bug in the compiler or the debugger.

Affected Versions. We conducted a thorough analysis of the
affected versions of the associated products impacted by the
confirmed bugs identified by Devil. We empirically investi-
gated the affected versions of relevant products for each bug.
It is important to note that a bug can affect multiple versions

6https://bugs.llvm.org/show_bug.cgi?id=46040

https://sourceware.org/gdb/bugs/
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90574
https://sourceware.org/bugzilla/show_bug.cgi?id=26061
https://bugs.llvm.org/show_bug.cgi?id=46040

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

Table 4. Distribution of confirmed bug importance across
various predefined relations.

Debugger Importance

#Confirmed bugs

R#1 R#2 R#3 Total

GDB

P2 critical 4 0 0 4
P2 normal 3 1 0 4
P3 normal 3 0 1 4
normal 2 0 1 3

LLDB
enhancement 0 0 2 2
normal 0 1 1 2

of a product, indicating its persistence within the toolchains
over a certain period of time. As depicted in Figure 4, two
out of the seven confirmed GDB bugs appeared at GDB-7.12
(released on October 7, 2016), implying that they remained
dormant for over two years until our report. Furthermore,
in the case of the bugs pertaining to GCC, one was found in
GCC-7, also exhibiting a lifespan of approximately two years.
Similarly, among the six confirmed or fixed LLVM toolchain
bugs, developers have definitively identified three as origi-
nating from Clang. Upon examining these Clang bugs, we
observed that all of them can be traced back to Clang-7.0,
indicating that they evaded detection by other testing tools
and remained concealed for around two years.

Summary on Influence

The bugs identified by Devil are regarded as im-
portant, and even critical, sparking extensive discus-
sions. Some of these issues have remained latent for a
long period, highlighting their significant influence.

5.3 RQ3: Contribution of Predefined Relations.

Tables 3 and Tables 4 present the statistics on the distribu-
tion of the detected bugs. As shown in Table 3(a), we found
that all the predefined relations are able to identify inconsis-
tencies in debuggers and detect bugs confirmed or fixed by
developers. This indicates the effectiveness of these relations
in exposing bugs in debuggers. Specifically, the R#1 (Reach-
ability preservation) rule led to the majority of confirmed
bugs, accounting for approximately 67% of the total. Out of
the 11 confirmed bugs discovered at the “-O0” optimization
level, 10 were discovered by R#1, as presented in Table 3(b).
Furthermore, all four P2 critical bugs were detected by R#1,
as presented in Table 4. The R#2 (Order preservation) and
R#3 (Value consistency) rules resulted in the detection of one
and five confirmed bugs, respectively, also contributing to
the overall effectiveness.

Summary on Contributions of Relations

The relation of R#1 (Reachability preservation), to a
certain extent, demonstrates a higher level of effec-
tiveness compared to the other predefined relations.

5.4 RQ4: Comparative Evaluation.

To investigate whether Devil is complementary to existing
techniques, we conducted a comparison with the state-of-
the-art testing tool, Debug2 [3]. Debug2 was chosen for com-
parison because it is the most recent technique targeting
correctness bug detection in the toolchains. We employed
Debug2 to run the bug-revealing programs corresponding to
the confirmed issues reported by Devil. The results are pre-
sented in Table 5. Ultimately, we found that most of the bugs
(13/18) reported by Devil cannot be detected by Debug2.
Besides, a bug related to compiler optimizations unearthed
by Devil cannot be detected by Debug2 since Devil consid-
ers a broader range of program states than Debug2. We also
examined whether Devil can expose the bugs discovered by
Debug2. We used the programs reported by Debug2 as inputs
for Devil, and observed that 5 out of the 17 reproducible
bugs can be exposed by Devil. These results demonstrate
that those techniques are orthogonal, and Devil is a vital
complement to existing testing techniques.

Summary on Contributions of Relations

Devil is a significant complement to existing testing
techniques for validating debugger toolchain.

5.5 RQ5: Computational Overhead of Devil

The execution overhead of testing tools is a crucial factor in
assessing their practicality. To evaluate the execution over-
head of Devil, we utilize the GCC release test suite (version
12.1.0) as our subject test programs. This evaluation employs
GCC/GDB 13.1.0 and Clang/LLDB, specifically the commit
08d094a. Only those programs that can be compiled inde-
pendently within 10 seconds, executed within 10 seconds,
and debugged within 60 seconds, under both source-level
stepping and instruction-level stepping, are considered for
use in Devil. Table 6 presents statistics for the subject test
programs that encountered errors or timeouts during the
compilation, execution, and debugging stages. As shown,
the majority of these programs (i.e., over 80%) cannot be
compiled independently. In total, around 7,000 and 6,000
test programs (as noted in the 8th row of Table 6) meet
these criteria for GCC and LLVM, respectively, and are used
in Devil. Subsequently, we present the average compila-
tion time, standalone execution time, and stepping time in
Devil for both source and instruction levels in Table 7. Specif-
ically, we find that the execution time required by Devil is
significantly greater than the standalone execution time for

https://github.com/llvm/llvm-project/commit/08d094a0e457360ad8b94b017d2dc277e697ca76

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 5. Comparison between Devil and 𝐷𝑒𝑏𝑢𝑔2 (SOTA).

Devil Debug
2

Tool #ID Importance Opt SOTA Tool #ID Importance Opt Devil

GDB 25350 P2 critical -O0 % LLDB 45883 normal -O3 !

GDB 25405 P2 critical -O0 % LLDB 45895 enhance -O1 %

GDB 25573 P2 critical -O0 % LLDB 45902 enhance -O3 %

GDB 26054 P2 normal -O0 % LLDB 45923 enhance -Og %

GDB 26063 P2 normal -O2 ! LLDB 45934 enhance -Oz !

GDB 27151 P2 normal -O0 % LLDB 45971 enhance Og %

GDB 29236 P2 normal -O2 % LLDB 46002 enhance -Og %

GDB 90574 P3 normal -O0 % LLDB 46008 enhance -Og %

GDB 90584 P3 normal -O0 % LLDB 46009 enhance -Og %

GDB 90586 P3 normal -O0 % LLDB 46038 enhance -Og %

GDB 95414 P3 normal -O2 ! LLDB 46074 enhance -Og !

GDB 30357 P2 critical -O0 % LLDB 46120 enhance -Og %

LLDB 45386 enhance -O1 ! LLDB 46181 normal -Og %

LLDB 45387 enhance -O1 ! LLDB 47093 enhance -Og %

LLDB 45676 normal -O0 % LLDB 47239 enhance -Og %

LLDB 45920 normal -O0 % LLDB 47257 normal -Og !

LLDB 46006 normal -O3 ! LLDB 47273 enhance -Og !

LLDB 55744 - -O1 %

Overall 5/18 Overall 5/17

Table 6. Number of subject test programs with errors or
timeouts during compilation, execution, and debugging.

Type Stage GCC LLVM

Error
Compilation 36,241 37,543
Execution 579 556
Debugging 23 26

Timeout
Compilation (10s) 16 12
Execution (10s) 35 28
Debugging (60s) 867 899

Normal 7,354 6,051
Total 45,115

each test program. Furthermore, the overhead associated
with instruction-level debugging is typically higher than
that of source-level debugging due to its finer granularity.
Additionally, enabling higher levels of optimization leads to
a reduction in execution time for Devil.

Table 7. Average compilation, standalone execution, and
stepping times in Devil for source and instruction levels.

Tool Stage -O0 -Og -O1 -O2 -O3

GCC

Compilation 0.11s 0.12s 0.17s 0.14s 0.14s
Standalone Execution 0.05s 0.01s 0.01s 0.01s 0.01s
Source Level 1.70s 0.54s 0.49s 0.39s 0.36s
Instruction Level 1.92s 1.10s 0.90s 0.71s 0.66s

Clang

Compilation 0.13s 0.15s 0.16s 0.15s 0.15s
Standalone Execution 0.06s 0.01s 0.01s 0.01s 0.01s
Source Level 1.78s 0.89s 0.89s 0.82s 0.82s
Instruction Level 4.00s 2.19s 2.19s 1.82s 1.79s

In general, the overhead associated with Devil is higher
than that of standalone execution, mainly due to the method-
ology used in the experiments. Concretely, to comprehen-
sively compare debugging traces between source-level and

https://sourceware.org/bugzilla/show_bug.cgi?id=25350
https://bugs.llvm.org/show_bug.cgi?id=45883
https://sourceware.org/bugzilla/show_bug.cgi?id=25405
https://bugs.llvm.org/show_bug.cgi?id=45895
https://sourceware.org/bugzilla/show_bug.cgi?id=25573
https://bugs.llvm.org/show_bug.cgi?id=45902
https://sourceware.org/bugzilla/show_bug.cgi?id=26054
https://bugs.llvm.org/show_bug.cgi?id=45923
https://sourceware.org/bugzilla/show_bug.cgi?id=26063
https://bugs.llvm.org/show_bug.cgi?id=45934
https://sourceware.org/bugzilla/show_bug.cgi?id=27151
https://bugs.llvm.org/show_bug.cgi?id=45971
https://sourceware.org/bugzilla/show_bug.cgi?id=29236
https://bugs.llvm.org/show_bug.cgi?id=46002
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90574
https://bugs.llvm.org/show_bug.cgi?id=46008
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90584
https://bugs.llvm.org/show_bug.cgi?id=46009
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90586
https://bugs.llvm.org/show_bug.cgi?id=46038
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95414
https://bugs.llvm.org/show_bug.cgi?id=46074
https://sourceware.org/bugzilla/show_bug.cgi?id=30357
https://bugs.llvm.org/show_bug.cgi?id=46120
https://github.com/llvm/llvm-project/issues/45386
https://bugs.llvm.org/show_bug.cgi?id=46181
https://github.com/llvm/llvm-project/issues/45387
https://bugs.llvm.org/show_bug.cgi?id=47093
https://bugs.llvm.org/show_bug.cgi?id=45676
https://bugs.llvm.org/show_bug.cgi?id=47239
https://bugs.llvm.org/show_bug.cgi?id=45920
https://bugs.llvm.org/show_bug.cgi?id=47257
https://bugs.llvm.org/show_bug.cgi?id=46006
https://bugs.llvm.org/show_bug.cgi?id=47273
https://github.com/llvm/llvm-project/issues/55744

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

instruction-level execution, we step through the entire pro-
gram from the entry point within a debugger, which intro-
duces overhead but remains manageable given the frame-
work’s goals. Notably, Devil also supports selective debug-
ging, enabling focused analysis on specific modules or state-
ments within test programs without exhaustive stepping.

6 Discussion

6.1 Manual Effort

In this study, we conducted a continuous bug-hunting cam-
paign across various trunk versions of the debugger toolchains.
Typically, Devil produces approximately 10 inconsistency
reports per test program when bugs are triggered, as a sin-
gle bug can result in multiple incorrect variable values or
execution orders. For each test program exhibiting incon-
sistencies, we manually inspect only the first detected oc-
currence. Our analysis begins by reviewing this issue and
individually submitting reports to the developers. After the
developers address a reported issue, we re-run the program
using the updated version of the toolchains to verify whether
the remaining inconsistencies identified in the same test pro-
gram persist. If these inconsistencies are resolved, it indi-
cates they were attributable to the same underlying issue.
This approach minimizes duplicate bug reports in the is-
sue trackers. Regarding false positives, the primary scenario
encounter with Devil arises when a variable remains unini-
tialized at certain points within the program. In such cases,
debuggers may access this uninitialized variable, resulting in
the generation of random values. Fortunately, this situation
has minimal impact on the cost of manual analysis, as it is
generally straightforward to identify which variables lack
initialization. In summary, the manual effort required for
Devil remains manageable.

6.2 Impact of Compiler Optimization

In practice, compiler optimizations can significantly alter
the input code, such as eliminating certain variables or re-
ordering the execution of instructions. Consequently, false
positives may arise when comparing traces produced by dif-
ferent optimization levels. For instance, Figure 5 illustrates a
bug report from prior research. Concretely, for the same pro-
gram P4 compiled with different optimization levels, -O1 and
-O2, GDB displays inconsistent values for the array element
a[0][0][0]. However, according to developers’ comments,
this inconsistency does not signify a genuine bug, and the
developers consider this behavior a typical outcome of the
optimization process. In particular, the compiler optimizes
large arrays by identifying unused elements and may opt not
to initialize them, leading to these inconsistencies. In con-
trast, Devil avoids this issue by comparing execution traces
of identical executables generated at a fixed optimization
level, while varying only the debugging levels. Thus, our

1 int d, e, f, h, l;
2 short b, g, i, m;
3 void n() {
4 char o;
5 int p = 0, j, k;
6 for (; i <= 1; i++) {
7 unsigned short a[6][2][2];
8 l = 0;
9 for (; l < 6; l++) {
10 j = 0;
11 for (; j < 2; j++) {
12 k = 0;
13 for (; k < 2; k++)
14 a[l][j][k] = 61344;
15 }
16 }
17 for (; f <= 1; f++)
18 if (d)
19 ...
20 if (b)
21 h = a[4][1][0];
22 }
23 }
24 int main() {
25 n();
26 }

(a) P4

$ gcc -O1 -g a.c
$ gdb a.c:20
(gdb) b 20
Breakpoint 1 at a.c:20.
(gdb) r
20 if (b)
(gdb) p a[0][0][0]
$1 = 61344

(b) Compilation with -O1

$ gcc -O2 -g a.c
$ gdb a.c:20
(gdb) b 20
Breakpoint 1 at a.c:20.
(gdb) r
20 if (b)
(gdb) p a[0][0][0]
$1 = 3

(c) Compilation with -O2

Figure 5. GCC bug#92417, marked as ‘WONTFIX’ by de-
velopers. This issue highlights an expected inconsistency in
array values between optimization levels -O1 (b) and -O2 (c).

method significantly decreases the incidence of such false
positives induced by compiler optimizations.

6.3 Threats to Validity

One key threat to the validity of our study is the appropri-
ateness of the subject programs used in the experiments.
Specifically, employing overly complex test programs can
pose substantial challenges in analyzing relevant issues, even
though they may effectively stress-test the toolchains. There-
fore, we selected test programs from the GCC test suite as
our subjects, given their extensive coverage of C seman-
tics [18] and their widespread use in testing compilers [4].
Moreover, these programs are of an appropriate size for thor-
ough inspection and bug reporting. Another threat to the

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92417

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

validity is the exclusion of test programs with execution time
exceeding ten seconds. Our objective is to expose bugs in
debuggers rather than waiting for the completion of all the
test programs. Therefore, this exclusion can be considered
acceptable. Nevertheless, it is important to note that test
programs with long execution times may potentially trigger
performance bugs in the debugger, which should be taken
into account for further investigation.

6.4 Future Work

In this work, we selected test programs from the GCC test
suite as subjects and have identified 18 confirmed bugs in
debuggers. Nevertheless, incorporating a broader range of
test programs is supposed to reveal additional bugs. For
instance, we could integrate fuzzing techniques to gener-
ate test programs (e.g., Csmith [16] and YARPGen [9]) or
employ real-world C programs as seeds forDevil.Devil cur-
rently supports forward execution to a randomly selected
program location, followed by stepping through each sub-
sequent statement or instruction. While exhaustively for-
warding execution to every program location is effective, it
incurs significant overhead. To mitigate Devil’s overhead,
we propose exploring the following potential heuristics:

• Input Binary Selection: By analyzing debug information
from binaries, we can identify instances where multiple
instructions fail to map to specific source lines or are asso-
ciated with common lines. This analysis helps determine
whether exhaustive stepping is necessary and facilitates
stress-testing of toolchains.
• Important Code Identification: This approach focuses
on code segments that are likely to trigger bugs, analyzing
function complexities and extracting relevant semantics
from historical bug-triggering test programs. This method
allows us to prioritize areas that require closer inspection.
• Coverage-Guided Fuzzing: This technique leverages the
code coverage of debuggers to guide the fuzzing process.
Specifically, if no new branches or statements are covered
within the debugger during debugging, we can skip step-
ping for that function, reducing unnecessary overhead.

6.5 Limitation

While Devil offers several advantages, it is not without its
limitations. First, manual effort is still required to inspect vio-
lations and determinewhether they constitute bugs that need
to be reported. To mitigate this, we can employ a duplicate
cluster analysis technique, as in previous work [3], to group
likely related violations and reduce redundant inspection
efforts. Second, Devil can only manifest bugs, unable to pin-
point their root cause. To address this, a practical approach to
locating the root cause is to identify the bug-introduced com-
mit using git bisect. We plan to incorporate this function
into our prototype, enhancing its capabilities and provid-
ing more valuable insights to users. Third, generalizing our

approach to interpreted programming languages poses chal-
lenges due to the lack of debuggers that support various
debugging levels. Specifically, debuggers such as rust-lldb
and JDB for Rust and Java, respectively, offer support for both
step and stepi commands, making them compatible with
Devil. However, adapting CLD to interpreted programming
languages like Python remains challenging. These limita-
tions should be considered when applying Devil and explor-
ing its applicability in different contexts.

7 Related Work

7.1 Debugger Testing

Recent research has proposed various techniques for testing
and validating debuggers. Lehmann and Pradel [7] devel-
oped a differential testing approach called DBDB to identify
bugs in JavaScript debuggers by comparing their behaviors.
Tolksdorf et al. [15] used metamorphic testing to validate
JavaScript debuggers by transforming the debugged code.
Li et al. [8] and Di Luna et al. [3] proposed techniques to
detect bugs related to compiler optimizations by inspecting
debug information. These existing approaches, however, are
limited to specific types of debugger or compiler bugs. In
contrast, Devil provides a more comprehensive testing ap-
proach capable of identifying genuine correctness bugs in
both debuggers and compilers, regardless of optimization.

7.2 Compiler Validation

Significant research has been conducted on ensuring the
correctness of compilers [11, 12, 19]. In terms of compiler
testing, generation-based approaches utilize program gener-
ators like Csmith [16] and YARPGen [9, 10] to create diverse
test programs for differential testing across compilers, opti-
mizations, and versions. Mutation-based approaches, such as
Orion [4] and Athena [5], generate semantics-preserving test
programs by randomly mutating non-executed code. Unlike
these existing techniques, Devil focuses on exposing bugs
associated with debug information, which can lead to erro-
neous debugging behaviors. This complements the existing
compiler testing studies.

8 Conclusion

In this study, we introduce a novel concept called Cross-Level
Debugging (CLD), which serves as a method for testing de-
bugger toolchains. Our key insight is that traces obtained
at different levels of debugging should adhere to specific
constraints. To implement CLD, we developed the prototype
tool, named Devil, and applied CLD to validate the GDB
and LLDB toolchains. Using Devil, we successfully identi-
fied and exposed a total of 27 bugs, with 18 of them having
been confirmed or addressed by the developers. These re-
sults underscore the efficacy of Devil in validating debugger
toolchains. Overall, our study offers a fresh perspective on
the testing of debugger toolchains.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yibiao Yang, Maolin Sun, Jiangchang Wu, Qingyang Li, and Yuming Zhou

Acknowledgments

We are grateful to the anonymous reviewers and our shep-
herd, Santosh Nagarakatte, for their insightful suggestions.
We thank the GCC and LLVM developers, particularly Tom
de Vries, for inspecting and fixing our reported bugs. We
appreciate Yanyan Jiang and Zhiqiang Zuo for their valu-
able feedback. Yuming Zhou and Maolin Sun are the cor-
responding authors. This work is partially supported by
the National Natural Science Foundation of China (Grants
62072194, 624B2067, and 62172205), the Jiangsu Natural Sci-
ence Foundation under Grant BK20231402, the Collaborative
Innovation Center of Novel Software Technology and Indus-
trialization, and the Fundamental Research Funds for the
Central Universities (14380121).

A Artifact Appendix

A.1 Abstract

The artifact contains the code and datasets we used for our
experiments, as well as scripts to generate the numbers and
tables of our evaluation. Specifically, it includes (a) links
and bug-triggering test cases of each reported bug; (b) seed
programs from the GCC test suite used for evaluation; (c)
scripts for analyzing distribution of test programs in dataset;
(d) scripts for analyzing running overhead of Devil; and (e)
detailed instruction documentation for using Devil. Every-
thing is packaged and pre-built as a docker image.

A.2 Artifact check-list (meta-information)

• Run-time environment: Linux
• Hardware: X86
• Howmuch disk space required (approximately)?: 20GB
• How much time is needed to prepare workflow (ap-

proximately)?: 10 minutes to download and import the
Docker image.
• How much time is needed to complete experiments

(approximately)?: 2∼3 hours (∼30 processes in parallel)
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache 2.0
• Archived (provide DOI)?: Yes

A.3 Description

The artifact can be downloaded from the following link:
https://doi.org/10.5281/zenodo.14053328

A.3.1 Hardware dependencies.

A standard X86 machine.

A.3.2 Software dependencies.

Docker

A.4 Installation

The Docker image is provided in a pre-configured format,
obviating the need for any installation. The following com-
mands can be employed to extract the artifact archive and
import it into Docker:

$ gunzip -c devil.tar.gz > devil.tar
$ cat devil.tar | docker import - devil

A.5 Experiment workflow

1. Read the documentation: Documentation is avail-
able online and can be accessed at this link.

2. Start the docker container as instructed: A pre-
configured Docker image is provided on the Zenodo
repository. Alternatively, the image can be downloaded
from Docker Hub. Detailed instructions for setup are
included in the online documentation.

3. Check bug reports: The documented bugs identified
in the GDB and LLDB toolchains can be reviewed here.

4. Reproduce experimental results: The reproduced
results primarily pertain to Section 5.5. Other results
presented in the paper are derived through manual
analysis and therefore cannot be reproducedwith scripts.

A.6 Evaluation and expected results

We provide the necessary dataset and scripts to reproduce
the evaluation results presented in Section 5. Specifically, the
results shown in Tables 6 and 7 can be reproduced using the
provided resources. For further details, please refer to the
accompanying website or archive.

References

[1] Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna,
and Leonardo Querzoni. 2023. Where Did My Variable Go? Poking
Holes in Incomplete Debug Information. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 935–947. https://doi.org/10.1145/3575693.3575720

[2] Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020. De-
bugging and detecting numerical errors in computation with posits.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI 2020). As-
sociation for Computing Machinery, New York, NY, USA, 731–746.
https://doi.org/10.1145/3385412.3386004

[3] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian
Österlund, Cristiano Giuffrida, and Leonardo Querzoni. 2021. Who’s
Debugging the Debuggers? Exposing Debug Information Bugs in Opti-
mized Binaries. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1034–1045. https://doi.org/10.1145/
3445814.3446695

[4] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler val-
idation via equivalence modulo inputs. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (Edinburgh, United Kingdom) (PLDI ’14). Association
for Computing Machinery, New York, NY, USA, 216–226. https:
//doi.org/10.1145/2594291.2594334

[5] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler
bugs via guided stochastic program mutation. In Proceedings of the

2015 ACM SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (Pittsburgh, PA, USA)
(OOPSLA 2015). Association for Computing Machinery, New York, NY,
USA, 386–399. https://doi.org/10.1145/2814270.2814319

https://doi.org/10.5281/zenodo.14053328
https://devil-asplos25-artifact.readthedocs.io/en/latest/index.html
https://devil-asplos25-artifact.readthedocs.io/en/latest/bug-report.html
https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/3385412.3386004
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319

Debugger Toolchain Validation via Cross-Level Debugging ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[6] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-
Testing of Link-Time Optimizers. In Proceedings of the 2015 Interna-

tional Symposium on Software Testing and Analysis (Baltimore, MD,
USA) (ISSTA 2015). Association for Computing Machinery, New York,
NY, USA, 327–337. https://doi.org/10.1145/2771783.2771785

[7] Daniel Lehmann and Michael Pradel. 2018. Feedback-Directed Differ-
ential Testing of Interactive Debuggers. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (Lake Buena
Vista, FL, USA) (ESEC/FSE 2018). Association for ComputingMachinery,
New York, NY, USA, 610–620. https://doi.org/10.1145/3236024.3236037

[8] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. 2020. De-
bug Information Validation for Optimized Code. In Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and

Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 1052–1065. https://doi.org/10.1145/
3385412.3386020

[9] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random
testing for C and C++ compilers with YARPGen. Proc. ACM Program.

Lang. 4, OOPSLA, Article 196 (Nov. 2020), 25 pages. https://doi.org/
10.1145/3428264

[10] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing
Loop Optimizations in Compilers for C++ and Data-Parallel Languages.
Proc. ACM Program. Lang. 7, PLDI, Article 181 (June 2023), 22 pages.
https://doi.org/10.1145/3591295

[11] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably correct peephole optimizations with alive.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Portland, OR, USA) (PLDI ’15).
Association for Computing Machinery, New York, NY, USA, 22–32.
https://doi.org/10.1145/2737924.2737965

[12] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2018. Practical verification of peephole optimizations with
Alive. Commun. ACM 61, 2 (Jan. 2018), 84–91. https://doi.org/10.1145/

3166064
[13] Y. N. Srikant and Priti Shankar. 2002. Compiler Design Handbook:

Optimizations and Machine Code Generation. CRC Press, Inc., USA.
[14] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and Analyzing

Compiler Warning Defects. In Proceedings of the 38th International

Conference on Software Engineering (Austin, Texas) (ICSE ’16). ACM,
New York, NY, USA, 203–213. https://doi.org/10.1145/2884781.2884879

[15] Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. 2019. Interac-
tive metamorphic testing of debuggers. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis

(Beijing, China) (ISSTA 2019). Association for Computing Machinery,
New York, NY, USA, 273–283. https://doi.org/10.1145/3293882.3330567

[16] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-
ing and understanding bugs in C compilers. In Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design

and Implementation (San Jose, California, USA) (PLDI ’11). Asso-
ciation for Computing Machinery, New York, NY, USA, 283–294.
https://doi.org/10.1145/1993498.1993532

[17] Yibiao Yang, Yanyan Jiang, Zhiqiang Zuo, Yang Wang, Hao Sun, Hong-
min Lu, Yuming Zhou, and Baowen Xu. 2020. Automatic self-validation
for code coverage profilers. In Proceedings of the 34th IEEE/ACM Inter-

national Conference on Automated Software Engineering (San Diego,
California) (ASE ’19). IEEE Press, 79–90. https://doi.org/10.1109/ASE.
2019.00018

[18] Yibiao Yang, Yuming Zhou, Hao Sun, Zhendong Su, Zhiqiang Zuo, Lei
Xu, and Baowen Xu. 2019. Hunting for bugs in code coverage tools via
randomized differential testing. In Proceedings of the 41st International

Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE
’19). IEEE Press, 488–499. https://doi.org/10.1109/ICSE.2019.00061

[19] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve
Zdancewic. 2013. Formal verification of SSA-based optimizations for
LLVM. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (Seattle, Washington,
USA) (PLDI ’13). Association for Computing Machinery, New York,
NY, USA, 175–186. https://doi.org/10.1145/2491956.2462164

https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/3236024.3236037
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3591295
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3166064
https://doi.org/10.1145/3166064
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/3293882.3330567
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/ASE.2019.00018
https://doi.org/10.1109/ASE.2019.00018
https://doi.org/10.1109/ICSE.2019.00061
https://doi.org/10.1145/2491956.2462164

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Debugger Toolchain and Validation
	2.2 Motivating Example

	3 Approach
	3.1 Formulation
	3.2 Algorithm
	3.3 Illustrative Example

	4 Experimental Setup
	4.1 Research Question
	4.2 Evaluation Setup
	4.3 Data Analysis Methodology

	5 Evaluation
	5.1 RQ1: Effectiveness of Devil.
	5.2 RQ2: Influence of Bugs.
	5.3 RQ3: Contribution of Predefined Relations.
	5.4 RQ4: Comparative Evaluation.
	5.5 RQ5: Computational Overhead of Devil

	6 Discussion
	6.1 Manual Effort
	6.2 Impact of Compiler Optimization
	6.3 Threats to Validity
	6.4 Future Work
	6.5 Limitation

	7 Related Work
	7.1 Debugger Testing
	7.2 Compiler Validation

	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

