
Boosting Compiler Testing via Eliminating Test
Programs with Long-Execution-Time

Jiangchang Wu, Yibiao Yang∗, Yuming Zhou∗
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

∗corresponding authors

Abstract—Compiler testing is crucially important as compiler
is the fundamental infrastructure in software development. One
common compiler testing practice leverages a random program
generator such as Csmith to generate a huge number of test
programs to stress-test compilers. Each of the test programs will
be compiled to different executables at different optimization
levels and then their outputs will be compared against each
other to differentially test compilers. However, the execution time
of different test programs varies a lot. Therefore, in practice,
developers often set a time limit, such as 60 or 300 seconds, to
control the execution of different executables. If the execution
exceeds the time limit, it will be terminated. Nevertheless, it is
still unclear which time limit is more suitable for compiler testing
in this context. We therefore perform the first empirical analysis
to investigate how different time limits afffect the efficiency of
compiler testing. We found that a time limit of 0.1 seconds
can achieve the maximum benefits for compiler testing with the
randomly generated test programs. At the same time, we found
that 12% test programs requires more than 300 seconds for
the execution and these test programs with long-execution-time
(LET) consume more than 90% of the entire testing resources
which makes compiler testing not cost-effectiveness. We thus
propose a framework named ELECT to automatically identify
and exclude LET test programs for boosting compiler testing.
Our extensive experiments on two popular compilers GCC and
LLVM have shown that ELECT can significantly improve the cost-
effectiveness of compiler testing as it can respectively detect about
19% and 10% more bugs than the two baseline approaches under
the same testing time budget. Besides, ELECT can respectively
save about 12% and 38% time than the two other approaches
for detecting the same number of bugs.

Index Terms—Compiler Testing, Boosting, Long-Execution-
Time, Eliminate

I. INTRODUCTION

Compiler is the most fundamental infrastructure in software
development. Ensuring the correctness of compilers is cru-
cially important. However, compiler testing is challenging as
effective test programs and test oracles are lacked. To this end,
prior studies have proposed two different randomized program
generators named Csmith [1] and YARPGen [2] to randomly
generate test programs for testing compilers. In practice, a
huge number of test programs will be randomly generated by
a program generator and each of the test programs will be used
as input for differentially testing compilers [3]. In particular,
each test program will be first compiled by different compilers
or by the same compiler with different optimization levels

This work is supported by the National Natural Science Foundation
of China (62072194, 62172205) and the CCF-Huawei Populus euphratica
Innovation Research Funding.

to obtain multiple executables. Then, the outputs of different
executables will be compared against each other to manifest
bugs in compilers.

In order to exhaustively test compilers, the best practice of
using randomized program generator in compiler testing is to
generate as many test programs as possible. Nevertheless, the
execution time of different executables compiled from these
randomly generated test programs vary a lot. Some of them
require much more time than others for the execution or even
never terminate at all. Thus, in practice, developers often set a
time limit to control the execution of different executables. If
an executable running out of time within a time limit, it will be
directly killed automatically. Prior studies on compiler testing
use different timeout settings, such as 5, 10, or 60 seconds [1],
[2], [4]–[6], to control the execution of executables. However,
it is still unclear which timeout setting is the best practice for
compiler testing.

In this study, we thus empirically investigate how different
timeout settings impact the effectiveness and efficiency of
compiler testing. We first analyze the distribution of the execu-
tion time required by different test programs. We empirically
found that about 88% of test programs require no more than
0.1 seconds and about 12% test programs require more than
300 seconds. Then, we compare different timeout settings to
investigate which one performs better in compiler testing.
Our experimental results found that setting timeout as 0.1
seconds outperforms the other settings. In other words, we
do not need to wait for an executable running for 5, 10, or 60
seconds unless it terminates. In addition, we also found that
12% test programs generated by a random program generator
consumes more than 90% of testing resources. Based on our
investigation, we can deduce that setting a proper time limit
contribute to compiler testing. Moreover, if we can identify
these test programs correspond to executables that require
long time for execution in advance, we can further improve
the efficiency of testing by avoiding running them. In this
study, we call the program corresponding to executable that
requires long time for execution or even never terminating at
all as a long-execution-time (LET) test program. However, it is
challenging to identify LET test programs as they often contain
complex semantics that result in their dynamic behaviors hard
to be known statically in advance.

Motivated by that, we second propose the first technique
to Eliminate test Programs with Long-Execution-Time for
Compiler Testing (ELECT) to identify LET test programs



for boosting compiler testing. We observe that most of the
LET test programs are lie to huge loops. Typically, each
loop in the test program is correspond to multiple branches.
Thus, ELECT turns to monitor the execution frequency of each
branches in the test programs. More specifically, ELECT first
instruments the test programs by using Gcov. This enables us
to obtain the code coverage at run-time for each branch in the
test program. Second, each of the instrumented test program
will be compiled to obtain executable, and the executable
will run for a given short period. If the executable is not
terminate, ELECT will dump the code coverage of the test
program. Finally, ELECT analyzes the execution frequency of
each branch to determine whether there is a huge loop inside
the test program. If so, ELECT identifies it as a LET test
program and the test program will be excluded for testing.
To evaluate the performance of ELECT, we use ELECT to
filter LET test programs from the test set budget, then the
rest test programs will be used to differentially test the
widely-used C compilers, i.e., GCC and LLVM. Note that,
we use the Different Optimization Levels (DOL) technique to
differentially test compilers [7]. Our extensive experimental
results show that on the one hand, more bug-revealing test
programs are found. On the other hand, bugs in a com-
piler can be exposed earlier. For example, ELECT detects
19.18% and 10.13% more bugs than DOL using time limit
0.01 and 5 respectively for all the used compiler subjects.
Moreover, ELECT spends 12.07% and 37.69% less time than
DOL in the two settings on detecting the same bugs.
Contributions We make the following major contributions:
• We perform an empirical study to investigate how different

timeout settings impact the effectiveness and efficiency of
compiler testing.

• Our empirical study demonstrates that we could better set
a small value of timeout as more bugs can be found. This
enables us to execute much more test programs to better
stress-testing compilers.

• We propose ELECT, the first technique for the identification
of LET test programs, by running the test programs for a
given short period and monitoring the execution frequency
of each branches for boosting compiler testing.

• Our experimental results on GCC and LLVM demonstrating
that ELECT is effective in boosting compiler testing as about
38% testing resources can be saved for exposing the same
bug and about 11% bugs can be found than the best practice
on timeout setting.
Paper Organization. The rest of this paper is structured as

follow. Section II describes the background and our motiva-
tion. Section III describes our approach for the identification
of LET test programs. Section V describes the experimental
setup and devises our experimental results. Section VII is the
threats to validity. Section VIII is the related works. Section IX
is our conclusion and future work.

II. BACKGROUND AND MOTIVATION

In this section, we first give a brief introduction to existing
compiler testing techniques. Then, we empirically investigate

how different timeout settings impact the effectiveness and
efficiency of differential compiler testing techniques.

A. Compiler Testing Techniques

Validating compilers contains several challenging prob-
lems [8]. One of the most important challenges in compiler
testing is lacking valid test programs. To this end, Yang et
al. [1] proposed the well-known C program generator Csmith,
a grammar-aided tool based on Randprog [9], to randomly
generate C test programs for testing compilers. In particular,
Csmith introduces some heuristics and safety checks to avoid
undefined behaviors. A large amount of compiler bugs are
found by Csmtih. However, Csmith had reached apparent
saturation on the current versions of GCC and LLVM. It used
heavy-handed dynamic safety checks to generate expressive
random programs free of undefined behaviors [2]. There-
fore, Livinskii et al. recently proposed another C program
generator YARPGen, which can generate C programs free
of undefined behaviors without dynamic safety checks [2].
YARPGen incorporates different static analysis techniques for
code generation conservatively to avoid undefined behaviors.
Besides, it implements generation policies that systematically
skew probability distributions to trigger certain optimizations
of the compiler.

The other important challenge in compiler testing is lack-
ing effective test oracles. Many compiler testing techniques
have been introduced to alleviate this challenge. One of the
most widely-used techniques is the Randomized Differential
Testing (RDT) technique [3] which tests compilers via seeking
inconsistencies between multiple independently implemented
compilers. In particular, the same test program will be fed
to different compilers to obtain multiple executables, and then
the outputs of these executables will be compared against each
other. If the outputs are inconsistent, a potential bug is found
in one of the compilers. Another one of the most widely-used
techniques is Different Optimization Levels (DOL) which tests
compilers via comparing the output of different executables
compiled by the same compiler at different optimization
levels [7]. Generally speaking, DOL is a variant of RDT [3].
More specifically, a given test program will first be compiled
into different executables using the same compiler at different
optimization levels. Then, the outputs of these executables at
different optimization levels will be compared against each
other to check whether they are consistent. The inconsistencies
can imply a potential bug in the compiler. In addition to those,
Equivalence Modulo Inputs (EMI) [10] generates a set of
equivalent test programs to address the test oracle problem
in compiler testing.

B. Impact of different timeout settings on compiler testing

Existing compiler testing techniques have significantly im-
proved the reliability of compilers as they have found thou-
sands of bugs for the most widely used compilers. Most test
programs in these prior studies originated from two random
program generators, Csmith [1] and YARPGen [2]. However,
the execution time of those generated test programs varies a



lot. Existing studies use different timeout settings to control the
execution of executables due to lacking sufficient investigation.
Table I lists the timeout settings by different studies. As can
be found, all these prior studies use different timeout settings
to control the execution of different executables.

TABLE I
TIMEOUT USED IN PREVIOUS WORK

Timeout
seconds Tool Approach

5 Csmith
Generate random C programs that
statically and dynamically conform
to the C99 standard

[1]

10 C2V Detect bugs in code coverage tools
by randomized differential testing [4]

60 HiCOND Use historical data to generate more
diverse program for compiler testing [5]

300 YARPGen Produce correct runnable C/C++
and DPC++ programs [2]

To have a better understanding of the impact of different
timeout settings for compiler testing, we first conduct a
preliminary investigation on the execution time distribution
on 30,000 test programs generated by Csmith 2.3.0. Csmith
is the most widely-used C test-program generation tool, and
it is not required to provide test inputs for these test pro-
grams generated by Csmith. Specifically, we choose GCC-
4.4.0 as subject following the existing work in the field of
compiler testing [7], [11]–[14] to compile these programs into
executables with “-O0” option. Next, we run each executable
and collect its execution time. Figure 1 shows the distribution
of the execution time. We can observe that although 88%
of test programs execute in less than 0.1 seconds, 12% of
test programs take longer than 300 seconds to execute. We
noticed that there are very few test programs with execution
times between 0.1 and 300 seconds. This may be due to the
insufficient diversity of test programs generated by Csmith
and the small number of generated test programs. The gap
may be reduced if more diverse test programs are generated.
Intuitively, those LET programs can affect the efficiency of
compiler testing unless an appropriate time limit is set.

26,263, 88%

9, 0%

3, 0% 26, 0%

11, 0%

3,688, 12%

[0,0.1)

[0.1,5)

[5,10)

[10,60)

[60,300)

[300,+∞)

Fig. 1. Distribution of execution time of test program generated by Csmith

For further investigation, we evaluate the impact of different
timeout settings on detecting bugs for GCC-4.4.0 by using the
test programs generated by Csmith. We set the testing period to
be 12 hours and employed the DOL testing technique. Figure 2
shows the number of bugs found for GCC-4.4.0 under different
timeout settings. In general, as the value of timeout increases,
fewer bugs are found. We also analyzed the time spent for each

timeout to find the top-1, top-2, top-5, and top-10 bugs. The
result is shown in Table II. The “DOL0.1” column represents
the time spent detecting bugs by DOL using 0.1 timeout;
the same goes for the “DOL5” column, “DOL10” column,
“DOL60” column, and “DOL300” column. DOL0.1 spent less
on detecting top-1, top-2, top-5, and top-10 bugs than DOL5.
We conducted our investigation on a workstation with an Intel
48-core 2.30GHz CPU, 120GiB RAM, and Ubuntu 18.04.3
LTS operating system. Our empirical experiments demonstrate
that even the 5 seconds timeout threshold would slash the
efficiency and effect of the testing process.

11
10

9

7

4

0

2

4

6

8

10

12

0.1 5 10 60 300

N
um

be
r o

f b
ug

Value of timeout (seconds)

Fig. 2. Number of bugs detected by using different timeout

TABLE II
TIME SPENT ON DETECTING BUG (*103 SECONDS)

Bug DOL0.1 DOL5 DOL10 DOL60 DOL300

Top-1 0.25 0.26 0.27 0.37 0.85
Top-2 2.33 2.48 2.63 4.13 11.35
Top-5 15.06 16.21 17.40 29.20 —
Top-10 40.83 43.18 — — —

Overall, an appropriate time limit can help improve the
efficiency of compiler testing. Besides, if we can accurately
identify such LET test programs in advance, the testing
efficiency can be further improved.

C. Illustrative Example

Figure 3 is a concrete example of a simplified LET test
program generated by Csmith. In Fig. 3, line 3 defines the vari-
able p with type “short”. Line 5 is a for loop, p receives
the return value from the foo function. However, the type of
return value from the foo function is defined as “unsigned
char”. As the minimum value of type “unsigned char”
is 0, p will be always larger than or equal to 0. As a result,
the loop condition “p >= -21” will be always satisfied and
further the for loop is an infinite loop. Therefore, this test
program will never terminate unless running out of time. If we
do not terminate the execution of this test program in time, a
lot of testing resources will be wasted. We believe this kind of
test program with long-execution lime will have a significantly
bad effect on compiler testing. If we can identify such test
programs in advance, many testing resources can be saved.

Code coverage [15] is a measure used to describe the
degree to which the source code of a program is executed
when a particular test suite runs. It contains the execution
frequencies of each line of code in the program as well as the
execution percentage of each branch. To obtain code coverage
of program execution by a code coverage profiler, we typically



1 void main ()
2 {
3 short p = 19;
4 for(p >= -21; p = foo(p, 3))
5 {...}
6 }
7
8 unsigned char foo (unsigned char a, char b)
9 {

10 return a-b;
11 }

Fig. 3. Huge loop generated by Csmith

need to wait for the program execution to be finished. In this
study, to address this problem, we instrument the test program
to obtain code coverage at runtime. We did not use the static
analysis technique because the values of some variables in the
test program generated by Csmtih can only be obtained when
the program is running. Besides, the static analysis technique
is inaccurate for the judgment of LET programs.

III. METHODOLOGY

Motivated by our observations, we propose ELECT to iden-
tify and exclude LET test program for accelerating compiler
testing. Figure 4 shows the framework of ELECT. In the
following, we describe the key steps in ELECT.

A. Instrument Test Program

As mentioned in Section II, the underlying reason for LET
programs is that it generally contains a huge loop. To identify
whether a test program is a LET test program, we turn to
determine whether there is a huge loop inside. Concretely,
ELECT first instruments the original test program and feeds it
to the target compiler to obtain the executable. Then it executes
the executable for a short period to monitor the execution
frequencies of each branch at runtime. ELECT makes a
decision on whether the test program is a LET one while the
executable is still running. Thus, ELECT should satisfy the
execution frequencies of each branch dumped at run-time. In
addition, it should not change the output of the test program.

B. Filter Running Programs

In this step, ELECT will identify and filter LET test
programs. Specifically, ELECT only puts an extremely short
period of time to run the test program. If the executable exit
in the given short period, the test program corresponding to
the executable will be kept for later use in compiler testing.
Otherwise, ELECT will dump the code coverage of the running
program. Then, ELECT analyzes the execution frequencies
of each branch in the test program to determine whether it
contains any huge loop. If so, it will be considered as a LET
test program and ELECT will kill the executable and filter out
the test program immediately. If the test program is not a LET
test program, it will also be kept to continue testing.

More significantly, it is critical for ELECT to configure
an appropriate period of time threshold to execute the test
program. If the period is too large, ELECT would waste a
large amount of time waiting for the execution of a test

program or otherwise miss many LET test programs. For
the sake of convenience, we simplify this configuration prob-
lem as follows. Suppose the instrumented test programs set
is Q = {Q1, Q2, . . . , Qi}, where i represents the number
of the test programs. Their execution time are denoted as
T = {T1, . . . , Ti}. Suppose the threshold is configured as
δ, and the filter is denoted as F .

F (Qi, δ) =

{
Ti Ti < δ

δ Ti ≥ δ
(1)

Let N = {N1, . . . , Nm} be the set of excluded programs,
where m (0 ≤ m ≤ s) represents the number of the test
program in filtered out test programs set, s is the total number
of test programs. R = {R1, . . . , Rn} is the set of remained
test programs, where n (0 ≤ n ≤ s) represents the number of
the test program in remained test program set. Suppose that the
running time consumption of all the program in the filtering
process is denoted as C , it is calculated as follows:

C =

m∑
x=0

F (Nx, δ) +

n∑
y=0

F (Ry, δ) + ξ, m+ n = s (2)

ξ denotes the inevitable overhead in the filtering process,
which is not generated by the running of the program. Based
on formula 2 and formula 1, we have the following formula:

C =

n∑
x=0

Tx +mδ + ξ, m+ n = s (3)

The values of m and n are related to the value of δ. Concretely,
the larger the value of δ or n, the smaller the value of m.

To filter out a potential LET test program, the test program
will be executed for a very short time. If the test program is
not finished in the given short period, our tool ELECT will
dump its execution coverage. Then, based on the execution
coverage, ELECT will identify whether the test program is a
LET test program. When ELECT identifies the test program
as a LET test program, the execution of the test program will
be directly killed and thus excluded from subsequent testing.
Therefore, potentially large amounts of testing resources can
be avoided. Intuitively speaking, if an execution is stuck in a
loop, there is a high probability the loop will execute for a
long time. To this end, ELECT sets a threshold γ to identify
the potential huge loop to identify LET test programs. The
parameter γ indicates the threshold of the execution frequency
of each branch. Each test program will be executed only once.
If the execution frequency of any one of the branches exceeds
the threshold γ, it will be identified as a LET test program.

IV. EXPERIMENTAL DESIGN

In this paper, we investigate following research questions:



CoverageC

ExecutorInstrumentor

Program QProgram P

Detector

Generator
Exit? LET-

Program?

Trash

End

Y

Y

N
N

Generate and Instrument Program Execute and Filter Program

Fig. 4. The framework for ELECT

A. Research Questions

• RQ1: Can ELECT detect more bugs than the baselines?
• RQ2: Does ELECT spend less time in detecting the same

bug than the baselines?
• RQ3: How different timeout settings in ELECT affect its

ability in detecting bugs?

B. Number of Bugs Metrics

We adopted Correcting Commits [7], a method commonly
used in existing studies [11]–[14], to identify the number
of detected bugs from a set of failing test programs. More
specifically, for any test program that triggers a bug of a
compiler C whose commit version is x, the Correcting Com-
mits method checks subsequent commits of the compiler, and
determine which commits correct the bug. If two failing test
programs have the same correcting commit, they are regarded
as triggering the same bug. The number of correcting commits
is approximately regarded as the number of detected bugs. In
fact, the accuracy of this method is quite substantial as existing
studies [7], [13] demonstrate.

C. Experimental Setup

In this study, all test programs we used are generated
by Csmith and YARPGen [1], [2]. We choose Csmith and
YARPGen as the random program generator to generate C
programs to test compilers for the following main reasons:
(1) they are extensively used in the literature of C compiler
testing; (2) they are effective in finding bugs as thousands of
bugs have been exposed and reported for the most widely-
used C compilers; (3) each test case generated by Csmith and
YARPGen is valid and does not require external inputs; (4)
the generated programs are free from undefined behavior; and
(5) they are efficient as a test program with tens of thousands
of lines can be generated quickly.

Besides, we use the default option of the code generators
(i.e., Csmith and YARPGen), which allows us to obtain diverse
test programs at random. To have a fair comparison, we used
the same random seed to control Csmith and Yarpgen for
generating the same set of test programs. A unique random
seed leads to a unique test program in Csmith and Yarpgen.

In line with existing compiler testing researches [1], [7],
we also used two popular C compilers as subjects, i.e., GCC
and LLVM. More specifically, we used two versions of GCC
compilers and two versions of LLVM compilers in the x86
64-Linux platform as our subject compilers, i.e., GCC-4.3.0,
GCC-4.4.0, LLVM-3.2.0, and LLVM-3.3.0. We choose these

old releases rather than the latest release since: 1) they released
for a long time, and thus most bugs have been exposed; 2)
most bugs have been fixed as they have been maintained for
a long period, thus we will have enough correcting commits
to evaluate different testing strategies.

For the parameters δ and γ used in the filter and detector, we
investigated the impact of these two parameters on a small test
program set in Section IV-F. In addition, we set each testing
period to 12 hours, and the compiler testing process runs in
parallel with 25 processes during each testing period. We do
not set a long testing period because this is more in line with
the premise of limited test resources. To facilitate comparison,
the termination time of the running test program will be set
to 0.01 seconds, 0.1 seconds, and 5 seconds according to
Section IV-F. They are taken as the baselines in our study.
The baselines demonstrate the effectiveness of compiler testing
without any accelerating approaches.

Our study was conducted on a workstation with an Intel 48-
core 2.30GHz CPU, 120GiB RAM, and Ubuntu 18.04.3 LTS
operating system.

D. Compiler Testing Techniques

In this study, we consider to apply ELECT to accelerate
Different Optimization Level (DOL) [7], which is a represen-
tative compiler testing technique and detects a number of new
bugs in compilers. We don’t use EMI because EMI needs to
get code coverage after the program has terminated, which is
not possible for LET programs. DOL exposes compiler bugs
by comparing the results produced by the same test program
with different optimization levels (i.e., -O0, -O1, -Os, -O2
and -O3). If the results are inconsistent, the test program
is considered to trigger a potential bug in the compiler.
Given a set of test programs filtered using our approach, we
compile and execute them under different optimization levels,
and determine whether the test program triggers a bug by
comparing their results.

E. Measurements

To measure ELECT’s accuracy, we use precision and recall
to evaluate ELECT’s effectiveness. To find out which test pro-
grams are actually LET, we first compiled each test program
with “-O0”. If the compiled test program did not terminate
within 300 seconds, we consider it as a truly LET test program.
A higher precision is preferred as it can reveal more LET test
programs during the compiler testing process.



F. Impact of Parameters

The setting may impact the effectiveness of our approach.
To mitigate this potential threat, we use Csmith to generate
100,000 test programs to form a test program data set. We
evaluated the impacts of δ and γ on this program set, and
the experiment also conducts in parallel with 25 processes.
Here we changed the value of one parameter each time and
kept the values of another one unchanged. Since 88% of the
test programs execute in less than 0.1 seconds, we limit the
value of δ to between 0 and 0.1. To reduce the influence of
random factors, we performed this experiment 10 times and
calculated the average results. Figure 5 shows the impacts of
the two parameters.

Fig. 5. Time consumption ratio

Fig. 6. The value of precision Fig. 7. The value of recall

As Figure 5 shows, when the value of δ is 0.01, the time
consumption in the filtering process accounts for the smallest
proportion of the total consumed time. However, the rest of
the value leads to an increase in the time consumption ratio.

In fact, the value of γ is directly related to the value of
δ, since the longer a LET test program is executed, the more
the execution times of the branches are executed inside the
program. Therefore, while discussing the value of γ, we should
consider the value of δ.

From Figure 6, for all the values of δ, with the increase of
the value of γ, the precision of detecting LET test program
also increase. But when the value of γ exceeds 100,000, the
precision changes little, and the precision of detecting LET test
programs is very close regardless of the value of δ. When the
value of γ is the same, and the value of δ is 0.025, the precision
of detecting LET test programs is the highest. According to
Figure 7, for all the values of δ, with the increase of the value
of γ, the recall of detecting LET test program also increase,
but when the value of γ exceeds 150,000, the recall changes
little. When the value of γ is the same, and the value of δ is
0.025, the recall of detecting LET test programs is the highest.

Combined with the results in Figure 5, we choose δ as 0.01
and γ as 150,000, which can reduce the test overhead and
ensure the high precision and recall of detection results.

V. EVALUATION

A. Overall of Detection Result

The overall results are shown in Table III and Table IV.
‘T0.01” represents that the time limit of DOL running each test
program is 0.01 seconds. Similarly, “T0.1” and “T5” mean the
time limit is 0.1 and 5 seconds respectively. A test program
was considered valid if the test program terminated (correctly
or otherwise) within the given seconds. “ELECT0.01” and
“ELECT0.1” refer to using ELECT to filter out the LET test
program within 0.01 and 0.1 second time limit.

1) Number of Valid Programs: Table III shows the results
of valid programs during the given 12-hour testing period.
According to this table, when T0.01 is used for testing, both
Csmith and YARPGen generate the greatest number of test
programs. However, they generate the least number of test
programs with T5. In other words, fewer valid programs are
generated as the value of the termination time increases.
Regardless of the timeout value, the valid programs generated
by ELECT are less than those generated by directly terminating
the program with the timeout, but the number is about the
same. In particular, the total number of valid programs gen-
erated by ELECT0.01 (ie., 1,748,604 + 3,792,975) is 119.76%
more than that of T5 (ie., 1,145,416 + 1,376,236) and only
3.34% less than that of T0.01 (ie., 1,787,150 + 3,945,760). The
number of valid programs generated by Csmith of ELECT0.01

(i.e., 1,748,604) for testing compilers is 1.53 times that
of T5 (i.e., 1,145,416) and the number of valid programs
generated by YARPGen of ELECT0.01 (i.e., 3,792,975) for
testing compilers is 2.76 times that of T5 (i.e., 1,376,236).
The reason is that the average compilation time of the test
program generated by YARPGen is longer than that of Csmith,
especially when compiling with “O3”. When this program is
compiled with “O0”, a portion of it is identified as a LET
program, eliminating the need to compile it with “O3”, which
saves a part of the compilation time.

2) Number of Bug-revealing Programs: As is shown in the
Table IV, DOL found the largest number of bug-revealing
programs by using T0.01 (i.e., 2,355 + 56). However, the
number of bug-revealing programs found by ELECT0.01 (i.e.,
2,277 + 111) is only 0.95% less than that of T0.01 and 19.52%
more than that of T5 (i.e., 1,826 + 172). The result from the
table shows that the number of bug-revealing programs found
by ELECT is almost the same as the number of bug-revealing
programs found by T0.01 and more than the number of bug-
revealing programs found by T5. Further analysis, no matter
which approach is used to boost the testing process of the
compiler, the test program generated by Csmith finds more
bug-revealing programs than the test program generated by
YARPGen. This is because the test programs generated by the
two generators have different structures and are designed to
detect different types of compiler bugs [2]. When using the
program generated by Csmith to test the compiler, ELECT0.01

finds 3.31% fewer bug-revealing programs than T0.01, but
when using the test program generated by YARPGen to test
the compiler, ELECT0.01 finds 98.21% more bug-revealing



TABLE III
DETECTION RESULT OF VALID PROGRAMS

Subject Csmith YARPGen
T0.01 T0.1 T5 ELECT0.01 ELECT0.1 T0.01 T0.1 T5 ELECT0.01 ELECT0.1

GCC-4.4.0 94,059 91,115 88,307 91,256 90,973 553,491 546,813 196,721 547,652 545,971
GCC-4.3.0 392,563 379,887 196,565 380,147 379,617 1,086,461 1,062,011 307,009 1,063,567 1,060,480

LLVM-3.3.0 609,525 599,560 394,494 599,889 599,239 1,135,376 1,073,380 446,029 1,074,389 1,072,395
LLVM-3.2.0 691,003 676,560 466,050 677,312 675,825 1,170,432 1,106,374 426,477 1,107,367 1,105,425

Total 1,787,150 1,747,122 1,145,416 1,748,604 1,745,654 3,945,760 3,788,578 1,376,236 3,792,975 3,784,271

TABLE IV
DETECTION RESULT OF BUG-REVEALING PROGRAMS AND BUGS

Generator Subject #Bug-revealing Programs #Bugs
T0.01 T0.1 T5 ELECT0.01 ELECT0.1 T0.01 T0.1 T5 ELECT0.01 ELECT0.1

Csmith

GCC-4.4.0 1,427 1,383 1,337 1,386 1,380 22 26 25 26 26
GCC-4.3.0 774 744 386 746 740 27 30 28 30 30

LLVM-3.3.0 49 45 36 46 45 5 5 5 5 5
LLVM-3.2.0 105 99 67 99 99 6 7 6 7 7

Total 2,355 2,271 1,826 2,277 2,264 60 68 64 68 68

YARPGen

GCC-4.4.0 14 32 48 31 31 4 5 4 5 5
GCC-4.3.0 15 27 39 27 27 4 6 5 6 6

LLVM-3.3.0 12 18 30 18 18 2 3 3 3 3
LLVM-3.2.0 15 35 55 35 35 3 5 3 5 5

Total 56 112 172 111 111 13 19 15 19 19

programs than T0.01. We analyzed the reason behind this
phenomenon. Part of the test programs generated by YARPGen
can’t be terminated normally within 0.01 seconds, so directly
eliminating these programs will miss a lot of bug-revealing
programs. ELECT will check those test programs that haven’t
terminated after the program has been executed for 0.01
seconds to determine whether they are LET programs, which
will preserve a large part of bug-revealing programs.

B. Number of Detected Bugs. (RQ1)

From Table IV, we counted the number of unique bugs for
each subject by using correcting commits [7]. ELECT0.01 de-
tected the largest number of bugs among the other approaches.
In particular, ELECT0.01 detected 87 (i.e., 68 + 19) bugs,
19.18% more than T0.01 (i.e., 60 + 13) and 10.13% more
than T5 (i.e., 64 + 15). ELECT0.01 detected the same number
of bugs as ELECT0.1. During the same testing period, the test
programs generated by Csmith can find more bugs than the
test programs generated by YARPGen. For different compilers,
each approach found more bugs in GCC than in LLVM.

As for the programs generated by YARPGen, even though
T5 found more bug-revealing programs than ELECT0.01,
ELECT0.01 also found more bugs than T5. Moreover, as for the
test program generated YARPGen, although T0.01 found more
bug-revealing programs than ELECT0.01, ELECT0.01 also
found more bugs than T0.01. The result demonstrates that sim-
ply applying a timeout such as 0.01 and 0.1 did not have a bet-
ter performance than ELECT0.01 and ELECT0.1, ELECT does
better outperform the comparison approaches.

There is a different performance between LLVM and GCC
in Table IV. We summarize the reasons as follow: (1) The
release time of the LLVM subjects is about five years later than
the GCC subjects. Thus, these LLVM subjects should have

fewer bugs than those GCC subjects. The chosen LLVM sub-
jects are LLVM-3.2.0 and LLVM-3.3.0, respectively, released
on 1/15/2013 and 6/7/2013. While GCC-4.3.0 and GCC-4.4.0
were released in 2008 and 2009. There is a five-year gap
between the LLVM subjects and the GCC subjects. In addition,
Csmith was released in 2011. At that time, Csmith found 203
bugs for LLVM and 79 for GCC. In other words, most bugs
found by Csmith have been fixed in those LLVM subjects
as they were released two years later after Csmith. (2) Each
LLVM version is maintained for a shorter period than the three
subject GCC versions. LLVM-3.2.0 and LLVM-3.3.0 are only
maintained for six months. While the GCC 4.3.0 and 4.4.0
are respectively maintained for 39 and 35 months. In this
study, we adopted Correcting Commit to identify the number
of detected bugs from a set of failing test programs. Since the
investigated GCC subjects were maintained for much longer
than the LLVM subjects, the GCC subjects should have much
more bug-fixing commits than LLVM during the maintenance
period. Note that we chose those versions of LLVM as subjects
since it is hard to compile elder versions of LLVM for applying
the Correcting Commits.

C. Time Spent on Detecting Each Bug. (RQ2)

The time spent on detecting each bug for each approach
using Csmith is shown in Table V.The “Bug” in Table V refers
to each bug, “1” refers to the first bug found by using Csmith,
“2” refers to the second bug found by using Csmith, and so
on. It is worth noting that each bug is unique and does not
intersect with other bugs in each project. The “T0.01” column
represents the time spent on detecting each bug by “T0.01”; the
same goes for the “T0.1” column, “T5” column, “ELECT0.01”
column, and “ELECT0.1” column.



TABLE V
THE TIME SPENT ON DETECTING EACH BUG BY USING CSMITH (*103 SECONDS)

Subject Bug T0.01 T0.1 T5 ELECT0.01 ELECT0.1 Subject Bug T0.01 T0.1 T5 ELECT0.01 ELECT0.1

GCC-4.4.0

1 0.00 0.00 0.00 0.00 0.00

GCC-4.3.0

23 0.00 0.00 0.00 0.00 0.00
2 0.06 0.06 0.07 0.06 0.06 2 0.02 0.02 0.02 0.02 0.02
3 0.10 0.10 0.11 0.10 0.10 3 0.03 0.03 0.04 0.03 0.03
4 — 0.47 0.47 0.46 0.46 4 0.09 0.09 0.11 0.09 0.09
5 0.71 0.71 0.73 0.71 0.71 5 0.10 0.10 0.12 0.10 0.10
6 1.02 1.03 1.06 1.03 1.03 6 0.18 0.18 0.22 0.18 0.18
7 — 1.19 1.22 1.19 1.19 7 0.33 0.33 0.40 0.34 0.34
8 3.51 3.54 3.65 3.53 3.57 8 0.52 0.52 0.64 0.53 0.53
9 6.93 6.98 7.13 6.98 7.00 9 0.72 0.73 0.90 0.73 0.73
10 — 8.04 8.20 8.03 8.05 10 1.06 1.08 1.69 1.08 1.08
11 11.01 11.10 11.39 11.08 11.11 11 1.14 1.16 1.94 1.16 1.17
12 13.89 12.14 12.49 12.12 12.15 12 1.64 1.66 3.36 1.65 1.66
13 14.35 14.40 14.81 14.38 14.41 13 1.81 1.82 3.86 1.82 1.83
14 15.29 15.36 15.82 15.34 15.38 14 3.37 3.40 8.40 3.39 3.42
15 17.85 17.90 18.52 17.89 17.92 15 — 3.43 8.47 3.42 3.44
16 18.24 18.30 18.93 18.28 18.32 16 3.64 3.68 9.20 3.67 3.70
17 20.04 20.11 20.81 20.08 20.12 17 4.34 4.39 11.21 4.37 4.41
18 23.06 23.12 23.96 23.10 23.14 18 4.57 4.62 11.87 4.60 4.64
19 — 23.31 24.15 23.29 23.33 19 5.49 5.55 14.59 5.54 5.58
20 25.24 25.33 26.25 25.30 25.35 20 — 6.69 17.76 6.66 6.71
21 26.80 26.90 27.88 26.87 26.92 21 8.20 8.26 22.22 8.23 8.30
22 26.97 27.07 28.07 27.04 27.09 22 8.77 8.87 23.91 8.83 8.90
23 28.64 27.97 29.02 27.95 28.00 23 10.02 10.11 27.37 10.05 10.14
24 — 28.29 29.33 28.25 28.31 24 — 11.82 30.84 11.77 11.87
25 30.46 30.58 31.69 30.54 30.60 25 13.13 13.26 32.54 13.20 13.31
26 34.54 34.68 — 34.63 34.70 26 13.30 13.45 32.74 13.38 13.50
27 43.06 — — — — 27 14.34 14.50 33.99 14.42 14.55

LLVM-3.2.0

1 0.32 0.32 0.48 0.33 0.33 28 16.20 16.38 36.20 16.30 16.45
2 0.45 0.46 0.69 0.47 0.47 29 18.89 19.07 — 18.97 19.16
3 2.34 2.39 3.46 2.39 2.42 30 25.21 25.49 — 25.35 25.59
4 4.50 4.57 6.64 4.57 4.63

LLVM-3.3.0

1 0.18 0.18 0.49 0.18 0.18
5 12.80 10.01 14.44 9.93 10.09 2 0.37 0.38 0.99 0.38 0.38
6 16.93 17.30 24.94 17.16 17.42 3 2.95 2.99 7.95 2.99 3.02
7 — 27.90 — 27.63 28.07 4 9.32 6.83 14.60 6.79 6.88

5 26.43 17.99 31.41 17.87 18.09

TABLE VI
THE TIME SPENT ON DETECTING EACH BUG BY USING YARPGEN (*103 SECONDS)

Subject Bug T0.01 T0.1 T5 ELECT0.01 ELECT0.1 Subject Bug T0.01 T0.1 T5 ELECT0.01 ELECT0.1

GCC-4.4.0

1 — 1.91 8.19 1.91 1.91

GCC-4.3.0

1 2.73 0.16 0.68 0.16 0.16
2 2.59 2.63 11.20 2.63 2.64 2 2.81 0.54 2.21 0.54 0.55
3 4.37 4.42 18.72 4.42 4.43 3 — — 3.57 — —
4 7.25 7.39 31.03 7.37 7.40 4 — 0.90 3.68 0.89 0.90
5 12.97 13.10 — 13.06 13.13 5 2.78 2.82 11.50 2.81 2.83

LLVM-3.2.0

1 0.32 0.32 1.48 0.32 0.32 6 — 5.41 — 5.39 5.44
2 1.56 1.59 7.56 1.59 1.60 7 18.70 14.68 — 14.66 14.70
3 — 11.87 27.63 11.81 11.91

LLVM-3.3.0
1 0.41 0.42 1.88 0.42 0.42

4 — 12.49 — 12.43 12.54 2 — 0.38 5.79 0.38 0.38
5 17.86 18.08 — 17.99 18.16 3 4.90 4.95 27.56 4.93 4.97

Note that since different approaches detected different num-
bers of bugs, some approaches may not find the bugs found by
other approaches, we use “—” to align the table. For example,
if “ELECT” finds the bug numbered 4 not found by “T0.01” in
Table V, then the “T0.01” columns corresponding to the bug
are marked as “—”. The time spent detecting each bug for
each approach using YARPGen is shown in Table VI.

We combine the data in Table V and Table VI. The result
shows that T0.01 spent less time than T0.1 detecting the same
number of bugs, and ELECT0.01 also spent less time than T0.1

detecting the same number of bugs. Among the common bugs
(79 out of 88), both found by T5 and ELECT0.01, it takes
less time for ELECT0.01 to find these 79 bugs than T5. More
specifically, the total time spent by ELECT0.01 detecting these
79 bugs is 37.69% less than that consumed by T5 detecting
these 79 bugs. There are 9 bugs found by ELECT0.01 but

not by T5. The reason is that ELECT0.01 generated more
valid programs than T5 to test compilers during the same
testing period. There are also 1 bugs found by T5 but not by
ELECT0.01. The reason is that ELECT0.01 recognizes some
non-LET programs as LET programs, and these non-LET
programs may reveal bugs in the compilers. Interestingly,
among the common bugs (67 out of 88) both found by T0.01

and ELECT0.01, the total time spent by ELECT0.01 detecting
these 67 bugs is 12.07% less than that spent by T0.01 detecting
these 67 bugs. The reason is that T0.01 eliminated some
programs that reveal bugs in compilers. For example, for the
5th bug found in LLVM-3.3.0 in Table V, T0.01 spent much
more time (i.e., 26.46) than ELECT0.01 (i.e., 17.89), and so as
to the 5th bug found in LLVM-3.2.0 in Table V. Among the 16
bugs not found by T0.01, 14 were found by ELECT0.01. The
reason is that simply applying the 0.01 timeout eliminated



those test programs that triggered bugs, while ELECT0.01

identified these programs as non-LET programs and preserved
them. From this table, ELECT0.01 boosts compiler testing in
almost all cases. That demonstrates that ELECT0.01 can detect
almost every bug more efficiently, indicating the stably good
effectiveness of ELECT0.01.

D. How Do Different Value of Timeout in ELECT Affect the
Effective and Efficient on Detecting Bugs? (RQ3)

We analyzed the different timeout affects on ELECT ac-
cording to Table III, IV V, and VI. The results show that
ELECT0.1 generates fewer valid programs than ELECT0.01,
and ELECT0.1 detects fewer bug-revealing programs than
ELECT0.01. Although ELECT0.1 detects the same number of
bugs as ELECT0.01, ELECT0.01 spent less time than ELECT0.1

detecting each bug. It demonstrates that when the timeout
value is 0.01, ELECT has a better performance than that of
timeout value is 0.1.

E. ELECT’s Effectiveness.

When comparing our filtering technique with the other
baselines ELECT0.01, T0.1, and T5, the extra costs incurred
by instrumentation and the cost of the filtering process
are all taken into account. Generally, compared to the
baselines, the testing process can achieve higher efficiency
with ELECT though the test programs are instrumented. To
further learn whether ELECT performs better, we perform
a paired t-test which can reflect the significance in statistic.
The p-value between ELECT0.01 and T0.01 is 0.0006, the p-
value between ELECT0.01 and T0.1 is 0.3434, and the p-value
between ELECT0.01 and T5 is 0.0025. The p-value shows that
ELECT0.01 significantly outperforms the compared approach.

Figure 8 and Figure 9 show that ELECT achieves good
precision and recall. For each subject, the precision and recall
of ELECT on the test programs generated by Csmith are higher
than those generated by YARPGen. Although the values of γ
and δ are obtained by the test program generated by Csmith
on GCC-4.4.0, they still perform well on the other subject. It
demonstrates the stable effectiveness of ELECT.

0
.9

8
7
5

0
.9

4
2
8

0
.9

1
0
1

0
.9

1
4
5

0
.9

2
8
9

0
.9

1
7
3

0
.9

0
1
2

0
.9

1
3
5

0.00

0.25

0.50

0.75

GCC−4.4.0 GCC−4.3.0 LLVM−3.3.0 LLVM−3.2.0

Subject

P
re

ci
si

o
n Generator

Csmith

YARPGen

Fig. 8. The precision of ELECT

0
.9

9
6
9

0
.9

3
2
8

0
.8

9
2
7

0
.9

2
5
8

0
.9

4
1
3

0
.9

2
7
6

0
.8

7
2
3

0
.9

0
5
6

0.00

0.25

0.50

0.75

GCC−4.4.0 GCC−4.3.0 LLVM−3.3.0 LLVM−3.2.0

Subject

R
e
ca

ll

Generator

Csmith

YARPGen

Fig. 9. The recall of ELECT

VI. DISCUSSION

Real test programs. There may not be a better outperform
if we apply the setting to real test programs. It is because our
empirical study was conducted on the test programs generated
by Csmith, and the execution distribution was also statistics
from the test programs generated by Csmith. However, the
purpose between the test programs generated by generators

and the real test programs is different during the compiler
testing. The generators such as Csmith and YARPGen ran-
domly generate a vast number of programs to stress-test
compilers. It has become a common practice in compiler
testing, which has significantly improved the correctness of
production compilers. The real test programs, such as test
programs from test suites of GCC and LLVM, are limited
in number. Each test program may correspond to a bug fixed
in the previous version. For real test programs, we can also
analyze the execution distribution of the test programs. Then
we can find an appropriate threshold in a small real test
program set to identify the LET test program for the real test
program by the number of branch executions.

Generalization of ELECT. ELECT is also applicable to
other programs, such as Java and Python. We can also find an
appropriate time threshold through an empirical study based on
the Java or Python programs and then identify whether a test
program is a LET test program by analyzing the frequencies
of branch executions.

VII. THREATS TO VALIDITY

We have identified the following main threats to validity:
Impact of parameters. We used the default options of the

Csmith and YARPGen, if more diverse options are adapted,
we may find more bugs during testing. The values of γ and
δ may impact the effectiveness of ELECT. Even though the
values of γ and δ are obtained with the test program generated
by Csmith running with GCC-4.4.0, ELECT still performs well
on the test program generated by YARPGen and other subjects.

Impact of subjects. We used five versions of two compilers
as subjects, and these subjects may not be representative
enough for different compilers. We selected the two most
popular C compilers to reduce this threat following the existing
studies [1], [3], [7], [11], [14], [16]–[21]. More specifically, we
considered different versions of different compilers to evaluate
the effectiveness of ELECT from various aspects.

Impact of used techniques. We used the DOL technique in
our study. However, we believe that ELECT can be generalized
to various compiler testing techniques such as RDT [3]. This is
because all these compiler testing techniques first utilize a test-
program generator like Csmith and YARPGen to generate test
programs and then use their test oracle mechanisms to detect
compiler bugs. ELECT just collects code coverage during the
execution of the test program to determine whether it is a
LET program. Therefore, ELECT can be combined with any
compiler testing technique to improve performance.

Impact of metrics. We adopted the Correcting Commits
method to estimate the number of detected bugs. This method
may not be precise, but it is the only metric that can automat-
ically measure the number of bugs with some precision [7].
We implemented based on the commits on Github, and if we
choose SVN, we may find more correct commits.

Different machine configurations. Our evaluations were
conducted on a workstation with many cores and a large
memory to eliminate the potential influence of different ma-
chine configurations. In particular, as stated in Section IV-



C, the workstation used in this study has 48 Intel 2.30 GHz
cores and a memory of 120 GiB RAM. However, we only
evaluate ELECT in the Linux operating system of Ubuntu
18.04.3 LTS. This may also affect our conclusions.

Limitations of ELECT. ELECT determines whether a test
program is a LET test program by detecting whether it contains
a huge loop. In other words, the program execution time is too
long is caused by the huge loop in the program. In Section
V-E, we verified the accuracy of identifying the huge loop
contained in the test program by the frequencies of branch
executions. We do not rule out that after waiting for an
indefinite time, the program will be completed and trigger
compiler bugs. However, our focus is that under the premise
of limited testing resources, we can execute as many testing
programs as possible so that we are more likely to find more
bugs in the compiler. It is verified in Section V that during
the same testing period, more compiler bugs can be found by
filtering out the LET test program.

VIII. RELATED WORK

This section introduces the related work on compiler testing
techniques, compiler testing boosting technique, and tech-
niques for huge loop detection.

A. Compiler Testing Techniques

Compiler testing is the main technology to verify the
correctness of compilers. To address the test oracle problem,
McKeeman et al. [3] proposed differential testing to detect
bugs by checking inconsistent behaviors across comparable
software or software versions. Randomized differential testing
is a widely-used black-box differential testing technique in
which the inputs are randomly generated [1], [22]. Yang et
al. [1] proposed and implemented a tool named Csmith, which
was used to randomly generate C programs without undefined
behavior to test the C compiler. Le et al. [10] proposed EMI to
generate some equivalent variants for each original C program,
which determines whether a compiler has bugs by comparing
the results produced by the original program and its variants.

B. Compiler Testing Boosting Technique

In practice, compiler testing approaches are inefficient as
they require a huge cost for running a large nubmer of
test programs to find a relatively small number of bugs [1],
[16], [23]. To address this efficiency problem, some boosting
approaches for compiler testing have been proposed. These
boosting approaches can be divided into two types: test-
program prioritization [11]–[13] and test-suite reduction [20].
To prioritize test programs, Chen et al. [12] proposed a method
of prioritizing test programs by converting each test program
into a text vector. Chen et al. [11] proposed a method to extract
two kinds of features from the test program to train a model
to predict the execution time of the test program and another
model to predict the error detection probability of the test
program. Chen et al. [13] propose an approach to distinguish-
ing test programs based on test coverage information, which is
named COP. Chen et al. [14] propose the first approach COTest

by considering both optimization settings and test programs to
boost compiler testing. In addition to excluding redundant test
programs from a test suite, Groce et al. [20] propose reducing
a compiler’s test suite by simplifying each test program but
retaining all test programs.

C. Techniques for Huge Loop Detection

Some existing works [24]–[26] suggested using program
analysis to identify huge loops. Gupta et al. [24] presented
TNT, which identifies huge loops by checking for the presence
of recurrent state sets that lead a loop to execute infinitely.
Velroyen et al. [25] proposed identifying huge loops with a
different invariant generation technique. Burnim et al. [26]
developed Looper, which combines symbolic execution with
Satisfiability Modulo Theories (SMT) solvers to infer and
prove the non-termination arguments of the loop. Carbin
et al. [27] proposed Jolt, which used a compiler to insert
instrumentation into the program. Carbin et al. [28] proposed
Bolt, which operates on binaries without available source code.
Researchers also developed static analysis tools, which can
be used in the process of program development to statically
determine whether each loop in the program is terminated or
not [29]–[31]. Different from existing studies, we focus on
the identification of test programs with long-execution-time
rather than the identification of huge loops. In addition, the
test programs in our study are only used for testing compilers.
Most prior studies in huge loop detection use a static approach.
Our approach is dynamically running the test program for a
short period and identifying potential LET test programs by
analyzing the execution frequencies.

IX. CONCLUSION

In this study, we first conduct an empirical study to eval-
uate the impact of different time limits on the effectiveness
and efficiency of compiler testing. We found that the time
limit used in previous work seriously affects the efficiency
of the testing process. Then, we introduce a new concept
of Long-Execution-Time (LET) test programs in compiler
testing. To our best knowledge, existing techniques do not
consider LET test programs, although it seriously affects
the efficiency of compiler testing. Therefore, we propose
the first simple but effective technique, named ELECT, to
identify LET test programs for boosting compiler testing. More
specifically, ELECT will put a very short period to execute the
test program and then monitor the execution frequencies for
each branch in the test program. After that, ELECT analyzes
execution frequencies to determine whether there is a huge
loop in the test program. If a test program has a potential
huge loop identified by ELECT , it will be considered a
LET test program and further excluded from later compiler
testing. Our evaluations on the old versions of GCC and LLVM
have demonstrated that ELECT can significantly improve the
efficiency of existing compiler testing techniques as bugs can
be exposed earlier, and more bug-revealing test programs can
be found after filtering LET test programs.



REFERENCES

[1] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 283–294. [Online]. Available: https://doi.org/10.
1145/1993498.1993532

[2] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for c
and c++ compilers with yarpgen,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020. [Online]. Available: https:
//doi.org/10.1145/3428264

[3] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[4] Y. Yang, Y. Zhou, H. Sun, Z. Su, Z. Zuo, L. Xu, and B. Xu, “Hunting
for bugs in code coverage tools via randomized differential testing,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 488–499.

[5] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang, “History-
guided configuration diversification for compiler test-program genera-
tion,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 305–316.

[6] Y. Yang, Y. Jiang, Z. Zuo, Y. Wang, H. Sun, H. Lu, Y. Zhou,
and B. Xu, “Automatic self-validation for code coverage profilers,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’19. IEEE Press, 2019, pp.
79–90. [Online]. Available: https://doi.org/10.1109/ASE.2019.00018

[7] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[8] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, pp.
4:1–4:36, 2020. [Online]. Available: https://doi.org/10.1145/3363562

[9] E. Eide and J. Regehr, “Volatiles are miscompiled, and what to do
about it,” in Proceedings of the 8th ACM international conference on
Embedded software, 2008, pp. 255–264.

[10] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 2014,
pp. 216–226.

[11] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to
prioritize test programs for compiler testing,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 700–711.

[12] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Test case prioritization for compilers: A text-vector based approach,”
in 2016 IEEE international conference on software testing, verification
and validation (ICST). IEEE, 2016, pp. 266–277.

[13] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
X. Bing, “Coverage prediction for accelerating compiler testing,” IEEE
Transactions on Software Engineering, 2018.

[14] J. Chen and C. Suo, “Boosting compiler testing via compiler
optimization exploration,” ACM Trans. Softw. Eng. Methodol., vol. 31,
no. 4, aug 2022. [Online]. Available: https://doi.org/10.1145/3508362

[15] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital
computer programs,” Commun. ACM, vol. 6, no. 2, pp. 58–63, Feb.
1963.

[16] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” ACM SIGPLAN Notices, vol. 50, no. 10,
pp. 386–399, 2015.

[17] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, 2016, pp. 294–305.

[18] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler
warning defects,” in Proceedings of the 38th International Conference
on Software Engineering, ser. ICSE ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 203–213. [Online].
Available: https://doi.org/10.1145/2884781.2884879

[19] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 327–337. [Online].
Available: https://doi.org/10.1145/2771783.2771785

[20] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause
reduction: delta debugging, even without bugs,” Software Testing, Veri-
fication and Reliability, vol. 26, no. 1, pp. 40–68, 2016.

[21] A. Groce, M. A. Alipour, C. Zhang, and Y. Chen, “Cause reduction
for quick testing,” in Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, ser. ICST
’14. USA: IEEE Computer Society, 2014, p. 243–252. [Online].
Available: https://doi.org/10.1109/ICST.2014.37

[22] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in Proceedings of the 29th Interna-
tional Conference on Software Engineering, ser. ICSE ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 621–631.

[23] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 327–337.

[24] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu, “Proving non-termination,” in Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
2008, pp. 147–158.

[25] H. Velroyen and P. Rümmer, “Non-termination checking for imperative
programs,” in International Conference on Tests and Proofs. Springer,
2008, pp. 154–170.

[26] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen, “Looper: Lightweight
detection of infinite loops at runtime,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2009, pp. 161–
169.

[27] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard, “Detecting and
escaping infinite loops with jolt,” in European Conference on Object-
Oriented Programming. Springer, 2011, pp. 609–633.

[28] M. Kling, S. Misailovic, M. Carbin, and M. Rinard, “Bolt: on-demand
infinite loop escape in unmodified binaries,” ACM SIGPLAN Notices,
vol. 47, no. 10, pp. 431–450, 2012.

[29] A. R. Bradley, Z. Manna, and H. B. Sipma, “Termination of polynomial
programs,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2005, pp. 113–129.

[30] M. A. Colón and H. B. Sipma, “Practical methods for proving program
termination,” in International Conference on Computer Aided Verifica-
tion. Springer, 2002, pp. 442–454.

[31] B. Cook, A. Podelski, and A. Rybalchenko, “Terminator: beyond safety,”
in International Conference on Computer Aided Verification. Springer,
2006, pp. 415–418.

https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1109/ASE.2019.00018
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3508362
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1109/ICST.2014.37

	Introduction
	Background and Motivation
	Compiler Testing Techniques
	Impact of different timeout settings on compiler testing
	Illustrative Example

	Methodology
	Instrument Test Program
	Filter Running Programs

	Experimental Design
	Research Questions
	Number of Bugs Metrics
	Experimental Setup
	Compiler Testing Techniques
	Measurements
	Impact of Parameters

	Evaluation
	Overall of Detection Result
	Number of Valid Programs
	Number of Bug-revealing Programs

	Number of Detected Bugs. (RQ1)
	Time Spent on Detecting Each Bug. (RQ2)
	How Do Different Value of Timeout in ELECT Affect the Effective and Efficient on Detecting Bugs? (RQ3)
	ELECT's Effectiveness.

	Discussion
	Threats to Validity
	Related Work
	Compiler Testing Techniques
	Compiler Testing Boosting Technique
	Techniques for Huge Loop Detection

	Conclusion
	References

